
COMP2111 Week 9
Term 1, 2024
Hoare Logic

1

Summary

L: A simple imperative programming language

Hoare triples (SYNTAX)

Hoare logic (PROOF)

Semantics for Hoare logic

Handling termination

Adding non-determinism

2

Aims

We’ve seen how to use Hoare logic to verify programs.

But how do we know that Hoare logic works? Do we need to take
the rules on faith? Or can we prove that it works?

We’ve already asked (and answered) a similar question about a
different logic (natural deduction).

3

Aims

We’ve seen how to use Hoare logic to verify programs.

But how do we know that Hoare logic works? Do we need to take
the rules on faith? Or can we prove that it works?

We’ve already asked (and answered) a similar question about a
different logic (natural deduction).

4

Informal semantics

Hoare logic gives a proof of {ϕ}P {ψ}, that is: ` {ϕ}P {ψ}
(axiomatic semantics)

What does it mean for {ϕ}P {ψ} to be valid, that is:
|= {ϕ}P {ψ}?

We need a semantics for L.

We could use the LTS semantics of L from Week 8. We will use a
denotational style instead, similar to Assignment 1 Problem 1 but
systematic.

5

Informal semantics

Hoare logic gives a proof of {ϕ}P {ψ}, that is: ` {ϕ}P {ψ}
(axiomatic semantics)

What does it mean for {ϕ}P {ψ} to be valid, that is:
|= {ϕ}P {ψ}?

We need a semantics for L.

We could use the LTS semantics of L from Week 8. We will use a
denotational style instead, similar to Assignment 1 Problem 1 but
systematic.

6

Informal semantics

Hoare logic gives a proof of {ϕ}P {ψ}, that is: ` {ϕ}P {ψ}
(axiomatic semantics)

What does it mean for {ϕ}P {ψ} to be valid, that is:
|= {ϕ}P {ψ}?

We need a semantics for L.

We could use the LTS semantics of L from Week 8. We will use a
denotational style instead, similar to Assignment 1 Problem 1 but
systematic.

7

Informal semantics: Programs

We know (from Assignment 1 Problem 1) that programs can be
modelled as relations between initial and final states.

8

Informal semantics: States

What is a state?

Two approaches:

Concrete: from a physical perspective

States are memory configurations, register contents, etc.
Store of variables and the values associated with them

Abstract: from a mathematical perspective

The pre-/postcondition predicates hold in a state
⇒ States are logical interpretations (Model + Environment)

There is only one model of interest: standard interpretations of
arithmetical symbols

⇒ States are fully determined by environments
⇒ States are functions that map variables to values

9

Informal semantics: States

What is a state?

Two approaches:

Concrete: from a physical perspective

States are memory configurations, register contents, etc.
Store of variables and the values associated with them

Abstract: from a mathematical perspective

The pre-/postcondition predicates hold in a state
⇒ States are logical interpretations (Model + Environment)

There is only one model of interest: standard interpretations of
arithmetical symbols

⇒ States are fully determined by environments
⇒ States are functions that map variables to values

10

Informal semantics: States

What is a state?

Two approaches:

Concrete: from a physical perspective

States are memory configurations, register contents, etc.
Store of variables and the values associated with them

Abstract: from a mathematical perspective

The pre-/postcondition predicates hold in a state
⇒ States are logical interpretations (Model + Environment)

There is only one model of interest: standard interpretations of
arithmetical symbols

⇒ States are fully determined by environments
⇒ States are functions that map variables to values

11

Informal semantics: States

What is a state?

Two approaches:

Concrete: from a physical perspective

States are memory configurations, register contents, etc.
Store of variables and the values associated with them

Abstract: from a mathematical perspective

The pre-/postcondition predicates hold in a state
⇒ States are logical interpretations (Model + Environment)

There is only one model of interest: standard interpretations of
arithmetical symbols

⇒ States are fully determined by environments
⇒ States are functions that map variables to values

12

Informal semantics: States

What is a state?

Two approaches:

Concrete: from a physical perspective

States are memory configurations, register contents, etc.
Store of variables and the values associated with them

Abstract: from a mathematical perspective

The pre-/postcondition predicates hold in a state
⇒ States are logical interpretations (Model + Environment)

There is only one model of interest: standard interpretations of
arithmetical symbols

⇒ States are fully determined by environments
⇒ States are functions that map variables to values

13

Informal semantics: States

What is a state?

Two approaches:

Concrete: from a physical perspective

States are memory configurations, register contents, etc.
Store of variables and the values associated with them

Abstract: from a mathematical perspective

The pre-/postcondition predicates hold in a state
⇒ States are logical interpretations (Model + Environment)

There is only one model of interest: standard interpretations of
arithmetical symbols

⇒ States are fully determined by environments
⇒ States are functions that map variables to values

14

Informal semantics: States

and Programs

State space (Env)

x ← 1
y ← 1
z ← 2

x ← 0
y ← 0
z ← 0

x ← 0
y ← 1
z ← 2

x ← 3
y ← 2
z ← 1

x ← 0
y ← 1
z ← 0

x ← 1
y ← 1
z ← 1

x ← 2
y ← 2
z ← 2

15

Informal semantics: States and Programs

State space (Env)

x ← 1
y ← 1
z ← 2

x ← 0
y ← 0
z ← 0

x ← 0
y ← 1
z ← 2

x ← 3
y ← 2
z ← 1

x ← 0
y ← 1
z ← 0

x ← 1
y ← 1
z ← 1

x ← 2
y ← 2
z ← 2

16

Informal semantics: States and Programs

17

Semantics for L

An environment or state is a function from variables to (numeric)
values. We denote by Env the set of all environments.

NB

An environment, η, assigns a numeric value [[e]]η to all expressions
e, and a boolean value [[b]]η to all boolean expressions b.

Given a program P of L, we define [[P]] to be a binary relation on
Env in the following manner...

18

Semantics for L

An environment or state is a function from variables to (numeric)
values. We denote by Env the set of all environments.

NB

An environment, η, assigns a numeric value [[e]]η to all expressions
e, and a boolean value [[b]]η to all boolean expressions b.

Given a program P of L, we define [[P]] to be a binary relation on
Env in the following manner...

19

Assignment

(η, η′) ∈ [[x := e]] if, and only if η′ = η[x 7→ [[e]]η]

20

Assignment: [[z := 2]]

State space (Env)

x ← 1
y ← 1
z ← 2

x ← 0
y ← 0
z ← 0

x ← 0
y ← 1
z ← 2

x ← 3
y ← 2
z ← 1

x ← 0
y ← 1
z ← 0

x ← 1
y ← 1
z ← 1

x ← 2
y ← 2
z ← 2

21

Recall

If R and S are binary relations, then the relational composition
of R and S , R; S is the relation:

R;S := {(a, c) : ∃b such that (a, b) ∈ R and (b, c) ∈ S}

If R ⊆ A× B is a relation, and X ⊆ A, then the image of X
under R, R(X) is the subset of B defined as:

R(X) := {b ∈ B : ∃a ∈ X such that (a, b) ∈ R}.

22

Sequencing

[[P;Q]] = [[P]]; [[Q]]

where, on the RHS, ; is relational composition.

23

Conditional, first attempt

[[if b then P else Q fi]] =

{
[[P]] if [[b]]η = true

[[Q]] otherwise.

We’d like to avoid mentioning η on the LHS, so this won’t do.

24

Conditional, first attempt

[[if b then P else Q fi]] =

{
[[P]] if [[b]]η = true

[[Q]] otherwise.

We’d like to avoid mentioning η on the LHS, so this won’t do.

25

Detour: Predicates as programs

A boolean expression b defines a subset (or unary relation) of Env:

〈b〉 = {η : [[b]]η = true}

This can be extended to a binary relation (i.e. a program):

[[b]] = {(η, η) : η ∈ 〈b〉}

Intuitively, b corresponds to the program

if b then skip else abort fi

26

Detour: Predicates as programs

A boolean expression b defines a subset (or unary relation) of Env:

〈b〉 = {η : [[b]]η = true}

This can be extended to a binary relation (i.e. a program):

[[b]] = {(η, η) : η ∈ 〈b〉}

Intuitively, b corresponds to the program

if b then skip else abort fi

27

Conditional, better attempt

[[if b then P else Q fi]] = [[b;P]] ∪ [[¬b;Q]]

28

While

while b do P od

Do 0 or more executions of P while b holds

Terminate when b does not hold

How to do “0 or more” executions of (b;P)?

29

While

while b do P od

Do 0 or more executions of (b;P)

Terminate with an execution of ¬b

How to do “0 or more” executions of (b;P)?

30

While

while b do P od

Do 0 or more executions of (b;P)

Terminate with an execution of ¬b
How to do “0 or more” executions of (b;P)?

31

Reflexive and transitive closure

Given a binary relation R ⊆ E × E , the transitive closure of R, R∗

is defined inductively by the following rules:

x ∈ E

x R∗ x

x R y y R∗ z

x R∗ z

NB

R;R∗ ⊆ R∗.

32

While

[[while b do P od]] = [[b;P]]∗; [[¬b]]

Do 0 or more executions of (b;P)

Conclude with an execution of ¬b

33

Validity

A Hoare triple is valid, written |= {ϕ}P {ψ} if

[[P]](〈ϕ〉) ⊆ 〈ψ〉.

That is, the relational image under [[P]] of the set of states where
ϕ holds is contained in the set of states where ψ holds.

34

Validity

35

Validity

〈ϕ〉

36

Validity

〈ϕ〉 〈ψ〉

37

Validity

〈ϕ〉 〈ψ〉

[[P]]

38

Validity

〈ϕ〉 〈ψ〉
[[P]](〈ϕ〉)

[[P]]

39

Soundness of Hoare Logic

Theorem

If ` {ϕ}P {ψ} then |= {ϕ}P {ψ}

40

Incompleteness

Theorem (Gödel’s Incompleteness Theorem)

There is no proof system that can prove every valid first-order
sentence about arithmetic over the natural numbers.

⇒ There are true statements that do not have a proof.

⇒ Because of (cons) there are valid triples that result from valid,
but unprovable, consequences.

⇒ Hoare Logic is not complete.

41

Incompleteness

Theorem (Gödel’s Incompleteness Theorem)

There is no proof system that can prove every valid first-order
sentence about arithmetic over the natural numbers.

⇒ There are true statements that do not have a proof.

⇒ Because of (cons) there are valid triples that result from valid,
but unprovable, consequences.

⇒ Hoare Logic is not complete.

42

Incompleteness

Theorem (Gödel’s Incompleteness Theorem)

There is no proof system that can prove every valid first-order
sentence about arithmetic over the natural numbers.

⇒ There are true statements that do not have a proof.

⇒ Because of (cons) there are valid triples that result from valid,
but unprovable, consequences.

⇒ Hoare Logic is not complete.

43

Incompleteness

Theorem (Gödel’s Incompleteness Theorem)

There is no proof system that can prove every valid first-order
sentence about arithmetic over the natural numbers.

⇒ There are true statements that do not have a proof.

⇒ Because of (cons) there are valid triples that result from valid,
but unprovable, consequences.

⇒ Hoare Logic is not complete.

44

Relative completeness of Hoare Logic

Theorem (Relative completeness of Hoare Logic)

With an oracle that decides the validity of predicates,

if |= {ϕ}P {ψ} then ` {ϕ}P {ψ} .

Intuitively: Hoare logic is no more incomplete than the logic used
to express the pre- and postconditions.

45

Summary

L: A simple imperative programming language

Hoare triples (SYNTAX)

Hoare logic (PROOF)

Semantics for Hoare logic

Handling termination

Adding non-determinism

46

Termination

Hoare triples for partial correctness:

{ϕ}P {ψ}

Asserts ψ holds if P terminates.

That’s just a safety property. Let’s add liveness!

Hoare triples for total correctness:

[ϕ]P [ψ]

Asserts:
If ϕ holds at a starting state, and P is executed;
then P will terminate and ψ will hold in the resulting state.

47

Termination

Hoare triples for partial correctness:

{ϕ}P {ψ}

Asserts ψ holds if P terminates.

That’s just a safety property. Let’s add liveness!

Hoare triples for total correctness:

[ϕ]P [ψ]

Asserts:
If ϕ holds at a starting state, and P is executed;
then P will terminate and ψ will hold in the resulting state.

48

Warning

Termination is hard!

Algorithmic limitations (e.g. Halting problem)

Mathematical limitations

Example

Collatz

while n > 1 do
if n%2 = 0
then

n := n/2
else

n := 3 ∗ n + 1
fi

od

49

Warning

Termination is hard!

Algorithmic limitations (e.g. Halting problem)

Mathematical limitations

Example

Collatz

while n > 1 do
if n%2 = 0
then

n := n/2
else

n := 3 ∗ n + 1
fi

od

50

Total correctness

How can we show:

[(m ≥ 0) ∧ (n > 0)]Pow [r = nm]?

Use Hoare Logic for total correctness:

(ass), (seq), (cond), and (cons) rules all the same

Modified (loop) rule

51

Total correctness

How can we show:

[(m ≥ 0) ∧ (n > 0)]Pow [r = nm]?

Use Hoare Logic for total correctness:

(ass), (seq), (cond), and (cons) rules all the same

Modified (loop) rule

52

Rules for total correctness

(ass)
[ϕ[e/x]] x := e [ϕ]

[ϕ]P [ψ] [ψ]Q [ρ]
(seq)

[ϕ]P;Q [ρ]

[ϕ ∧ g]P [ψ] [ϕ ∧ ¬g]Q [ψ]
(if)

[ϕ] if g then P else Q fi [ψ]

ϕ′ → ϕ [ϕ]P [ψ] ψ → ψ′
(cons)

[ϕ′]P [ψ′]

53

Terminating while loops

{ϕ}while b do P od {ψ}

Partial correctness:
Find an invariant I such that:

ϕ→ I (establish)

{I ∧ b}P {I} (maintain)

(I ∧ ¬b)→ ψ (conclude)

Show termination:
Find a variant v such that:

(I ∧ b)→ v > 0 (positivity)

[I ∧ b ∧ v = N]P [v < N] (progress)

54

Terminating while loops

[ϕ] while b do P od [ψ]

Partial correctness:
Find an invariant I such that:

ϕ→ I (establish)

[I ∧ b]P [I] (maintain)

(I ∧ ¬b)→ ψ (conclude)

Show termination:
Find a variant v such that:

(I ∧ b)→ v > 0 (positivity)

[I ∧ b ∧ v = N]P [v < N] (progress)

55

Loop rule for total correctness

[ϕ ∧ g ∧ (v = N)]P [ϕ ∧ (v < N)] (ϕ ∧ g)→ (v > 0)
(loop)

[ϕ] while g do P od [ϕ ∧ ¬g]

56

Termination for Pow

Pow

{init: (m ≥ 0) ∧ (n > 0)}
{(1 = n0) ∧ (0 ≤ m) ∧ init}

r := 1; {(r = n0) ∧ (0 ≤ m) ∧ init}
i := 0;

{Inv}
while i < m do {Inv ∧ (i < m)

∧ (v = N)

}
{(r ∗ n = ni+1) ∧ (i + 1 ≤ m) ∧ init

∧ (v = N)

}
r := r ∗ n; {(r = ni+1) ∧ (i + 1 ≤ m) ∧ init

∧ (v = N)

}
i := i + 1 {Inv

∧ (v < N)

}
od {Inv ∧ (i ≥ m)}

{r = nm}

What is a suitable variant?

v := (m − i)

57

Termination for Pow

Pow

{init: (m ≥ 0) ∧ (n > 0)}
{(1 = n0) ∧ (0 ≤ m) ∧ init}

r := 1; {(r = n0) ∧ (0 ≤ m) ∧ init}
i := 0;

{Inv}
while i < m do {Inv ∧ (i < m)

∧ (v = N)

}
{(r ∗ n = ni+1) ∧ (i + 1 ≤ m) ∧ init

∧ (v = N)

}
r := r ∗ n; {(r = ni+1) ∧ (i + 1 ≤ m) ∧ init

∧ (v = N)

}
i := i + 1 {Inv

∧ (v < N)

}
od {Inv ∧ (i ≥ m)}

{r = nm}

What is a suitable variant? v := (m − i)

58

Termination for Pow

Pow

{init: (m ≥ 0) ∧ (n > 0)}
{(1 = n0) ∧ (0 ≤ m) ∧ init}

r := 1; {(r = n0) ∧ (0 ≤ m) ∧ init}
i := 0;

{Inv}
while i < m do {Inv ∧ (i < m) ∧ (v = N)}

{(r ∗ n = ni+1) ∧ (i + 1 ≤ m) ∧ init

∧ (v = N)

}
r := r ∗ n; {(r = ni+1) ∧ (i + 1 ≤ m) ∧ init

∧ (v = N)

}
i := i + 1 {Inv

∧ (v < N)

}
od {Inv ∧ (i ≥ m)}

{r = nm}

What is a suitable variant? v := (m − i)

59

Termination for Pow

Pow

{init: (m ≥ 0) ∧ (n > 0)}
{(1 = n0) ∧ (0 ≤ m) ∧ init}

r := 1; {(r = n0) ∧ (0 ≤ m) ∧ init}
i := 0;

{Inv}
while i < m do {Inv ∧ (i < m) ∧ (v = N)}

{(r ∗ n = ni+1) ∧ (i + 1 ≤ m) ∧ init

∧ (v = N)

}
r := r ∗ n; {(r = ni+1) ∧ (i + 1 ≤ m) ∧ init

∧ (v = N)

}
i := i + 1 {Inv ∧ (v < N)}

od {Inv ∧ (i ≥ m)}
{r = nm}

What is a suitable variant? v := (m − i)

60

Termination for Pow

Pow

{init: (m ≥ 0) ∧ (n > 0)}
{(1 = n0) ∧ (0 ≤ m) ∧ init}

r := 1; {(r = n0) ∧ (0 ≤ m) ∧ init}
i := 0;

{Inv}
while i < m do {Inv ∧ (i < m) ∧ (v = N)}

{(r ∗ n = ni+1) ∧ (i + 1 ≤ m) ∧ init

∧ (v = N)

}
r := r ∗ n; {(r = ni+1) ∧ (i + 1 ≤ m) ∧ init ∧ (v = N)}
i := i + 1 {Inv ∧ (v < N)}

od {Inv ∧ (i ≥ m)}
{r = nm}

What is a suitable variant? v := (m − i)

61

Termination for Pow

Pow

{init: (m ≥ 0) ∧ (n > 0)}
{(1 = n0) ∧ (0 ≤ m) ∧ init}

r := 1; {(r = n0) ∧ (0 ≤ m) ∧ init}
i := 0;

{Inv}
while i < m do {Inv ∧ (i < m) ∧ (v = N)}

{(r ∗ n = ni+1) ∧ (i + 1 ≤ m) ∧ init ∧ (v = N)}
r := r ∗ n; {(r = ni+1) ∧ (i + 1 ≤ m) ∧ init ∧ (v = N)}
i := i + 1 {Inv ∧ (v < N)}

od {Inv ∧ (i ≥ m)}
{r = nm}

What is a suitable variant? v := (m − i)

62

Additional proof obligations

init: (m ≥ 0) ∧ (n > 0)
Inv: (r = ni) ∧ (i ≤ m) ∧ init
v : m − i

Inv ∧ (i < m) → (v > 0)

[v = N] i := i + 1 [v < N]

63

Additional proof obligations

Total correctness Hoare logic is designed to prove partial
correctness and termination at the same time.

You can also do them separately:

1 Prove a partial correctness Hoare triple.

2 Find a variant for every loop.

Doing it completely separate isn’t always possible: sometimes,
termination depends on the invariant.

64

Summary

L: A simple imperative programming language

Hoare triples (SYNTAX)

Hoare logic (PROOF)

Semantics for Hoare logic

Handling termination

Adding non-determinism

65

Non-determinism

Non-determinism involves the computational model branching into
one of several directions.

Any branch can happen (decision is not under our control).

66

Non-determinism

Why add non-determinism?

More general than deterministic behaviour

Sometimes useful for modelling interaction (c.f. coffee
machines).

Useful for abstraction (abstracted code is easier to reason
about)

67

L+: a simple language with non-determinism

We relax the Conditional and Loop commands in L to give us
non-deterministic behaviour.

The programs of L+ are defined as:

Assign: x := e, where x is a variable and e is an expression

Predicate: ϕ, where ϕ is a predicate

Sequence: P;Q, where P and Q are programs

Choice: P + Q, where P and Q are programs; intuitively,
make a non-deterministic choice between P and Q

Loop: P∗, where P is a program; intuitively, loop for a
non-deterministic number of iterations

P :: (x := e) | ϕ | P1;P2 | P1 + P2 | P∗1

68

L+: a simple language with non-determinism

We relax the Conditional and Loop commands in L to give us
non-deterministic behaviour.

The programs of L+ are defined as:

Assign: x := e, where x is a variable and e is an expression

Predicate: ϕ, where ϕ is a predicate

Sequence: P;Q, where P and Q are programs

Choice: P + Q, where P and Q are programs; intuitively,
make a non-deterministic choice between P and Q

Loop: P∗, where P is a program; intuitively, loop for a
non-deterministic number of iterations

P :: (x := e) | ϕ | P1;P2 | P1 + P2 | P∗1

69

L+: a simple language with non-determinism

We relax the Conditional and Loop commands in L to give us
non-deterministic behaviour.

The programs of L+ are defined as:

Assign: x := e, where x is a variable and e is an expression

Predicate: ϕ, where ϕ is a predicate

Sequence: P;Q, where P and Q are programs

Choice: P + Q, where P and Q are programs; intuitively,
make a non-deterministic choice between P and Q

Loop: P∗, where P is a program; intuitively, loop for a
non-deterministic number of iterations

P :: (x := e) | ϕ | P1;P2 | P1 + P2 | P∗1

70

L+: a simple language with non-determinism

We relax the Conditional and Loop commands in L to give us
non-deterministic behaviour.

The programs of L+ are defined as:

Assign: x := e, where x is a variable and e is an expression

Predicate: ϕ, where ϕ is a predicate

Sequence: P;Q, where P and Q are programs

Choice: P + Q, where P and Q are programs; intuitively,
make a non-deterministic choice between P and Q

Loop: P∗, where P is a program; intuitively, loop for a
non-deterministic number of iterations

P :: (x := e) | ϕ | P1;P2 | P1 + P2 | P∗1

71

L+: a simple language with non-determinism

P :: (x := e) | ϕ | P1;P2 | P1 + P2 | P∗1

NB

L can be defined in L+ by defining:

if b then P else Q od = (b;P) + (¬b;Q)

while b do P od = (b;P)∗;¬b

72

Example
Example

A program in L+ that non-deterministically checks if
(x ∨ y) ∧ (¬x ∨ ¬z) ∧ (¬y ∨ z) is satisfiable:

SAT

(x := 0) + (x := 1);
(y := 0) + (y := 1);
(z := 0) + (z := 1);

if((x = 1) ∨ (y = 1)) ∧
((x = 0) ∨ (z = 0)) ∧
((y = 0) ∨ (z = 1))

then r := 1
else r := 0
fi

The formula is satisfiable if SAT could set r to 1.

73

Example
Example

A program in L+ that non-deterministically checks if
(x ∨ y) ∧ (¬x ∨ ¬z) ∧ (¬y ∨ z) is satisfiable:

SAT

(x := 0) + (x := 1);
(y := 0) + (y := 1);
(z := 0) + (z := 1);
if((x = 1) ∨ (y = 1)) ∧

((x = 0) ∨ (z = 0)) ∧
((y = 0) ∨ (z = 1))

then r := 1
else r := 0
fi

The formula is satisfiable if SAT could set r to 1.

74

Example
Example

A program in L+ that non-deterministically checks if
(x ∨ y) ∧ (¬x ∨ ¬z) ∧ (¬y ∨ z) is satisfiable:

SAT

(x := 0) + (x := 1);
(y := 0) + (y := 1);
(z := 0) + (z := 1);
if((x = 1) ∨ (y = 1)) ∧

((x = 0) ∨ (z = 0)) ∧
((y = 0) ∨ (z = 1))

then r := 1
else r := 0
fi

The formula is satisfiable if SAT could set r to 1.
75

Proof rules

Hoare logic rules are cleaner:

{ϕ}P {ψ} {ϕ}Q {ψ}
(choice)

{ϕ}P + Q {ψ}

{ϕ}P {ϕ}
(loop)

{ϕ}P∗ {ϕ}

76

Semantics

Semantics is as for L, except:

[[P + Q]] = [[P]] ∪ [[Q]] [[P∗]] = [[P]]∗

77

Bonus slides

What follows is a proof that Hoare logic is sound.

We most likely won’t have time to do any of this in the lectures.

78

Summary

Set theory revisited

Soundness of Hoare Logic

Completeness of Hoare Logic

79

Summary

Set theory revisited

Soundness of Hoare Logic

Completeness of Hoare Logic

80

Some results on relational images
Lemma

For any binary relations R, S ⊆ X × Y and subsets A,B ⊆ X :

(a) If A ⊆ B then R(A) ⊆ R(B)

(b) R(A) ∪ S(A) = (R ∪ S)(A)

(c) R(S(A)) = (S ;R)(A)

Proof (a):

81

Some results on relational images
Lemma

For any binary relations R, S ⊆ X × Y and subsets A,B ⊆ X :

(a) If A ⊆ B then R(A) ⊆ R(B)

(b) R(A) ∪ S(A) = (R ∪ S)(A)

(c) R(S(A)) = (S ;R)(A)

Proof (a):

82

Some results on relational images
Lemma

For any binary relations R, S ⊆ X × Y and subsets A,B ⊆ X :

(a) If A ⊆ B then R(A) ⊆ R(B)

(b) R(A) ∪ S(A) = (R ∪ S)(A)

(c) R(S(A)) = (S ;R)(A)

Proof (a):

y ∈ R(A) ⇔ ∃x ∈ A such that (x , y) ∈ R

⇒ ∃x ∈ B such that (x , y) ∈ R

⇔ y ∈ R(B)

83

Some results on relational images
Lemma

For any binary relations R, S ⊆ X × Y and subsets A,B ⊆ X :

(a) If A ⊆ B then R(A) ⊆ R(B)

(b) R(A) ∪ S(A) = (R ∪ S)(A)

(c) R(S(A)) = (S ;R)(A)

Proof (b):

84

Some results on relational images
Lemma

For any binary relations R, S ⊆ X × Y and subsets A,B ⊆ X :

(a) If A ⊆ B then R(A) ⊆ R(B)

(b) R(A) ∪ S(A) = (R ∪ S)(A)

(c) R(S(A)) = (S ;R)(A)

Proof (b):

y ∈ R(A) ∪ S(A) ⇔ y ∈ R(A) or y ∈ S(A)

⇔ ∃x ∈ A s.t. (x , y) ∈ R or ∃x ∈ A s.t. (x , y) ∈ S

⇔ ∃x ∈ A s.t. (x , y) ∈ R or (x , y) ∈ S

⇔ ∃x ∈ A s.t. (x , y) ∈ (R ∪ S)

⇔ y ∈ (R ∪ S)(A)

85

Some results on relational images
Lemma

For any binary relations R, S ⊆ X × Y and subsets A,B ⊆ X :

(a) If A ⊆ B then R(A) ⊆ R(B)

(b) R(A) ∪ S(A) = (R ∪ S)(A)

(c) R(S(A)) = (S ;R)(A)

Proof (c):

86

Some results on relational images
Lemma

For any binary relations R, S ⊆ X × Y and subsets A,B ⊆ X :

(a) If A ⊆ B then R(A) ⊆ R(B)

(b) R(A) ∪ S(A) = (R ∪ S)(A)

(c) R(S(A)) = (S ;R)(A)

Proof (c):

z ∈ R(S(A)) ⇔ ∃y ∈ S(A) s.t. (y , z) ∈ R

⇔ ∃x ∈ A, y ∈ S(A) s.t. (x , y) ∈ S and (y , z) ∈ R

⇔ ∃x ∈ A s.t. (x , z) ∈ (S ;R)

⇔ z ∈ (S ;R)(A)

87

Some results on relational images

Corollary

If R(A) ⊆ A then R∗(A) ⊆ A

Reformulated: assuming R(A) ⊆ A, x ∈ A, and x R∗ y , prove
y ∈ A.
Proof is by induction on the derivation of x R∗ y .

(B) Trivial when x = y .

(I) We know that x ∈ A, x R y and y R∗ z . Because
R(A) ⊆ A, we have y ∈ A. By the induction
hypothesis, z ∈ A.

88

Summary

Set theory revisited

Soundness of Hoare Logic

Completeness of Hoare Logic

89

Soundness of Hoare Logic

Theorem

If ` {ϕ}P {ψ} then |= {ϕ}P {ψ}

Proof:
By induction on the structure of the proof.

90

Soundness of Hoare Logic

Theorem

If ` {ϕ}P {ψ} then |= {ϕ}P {ψ}

Proof:

By induction on the structure of the proof.

91

Soundness of Hoare Logic

Theorem

If ` {ϕ}P {ψ} then |= {ϕ}P {ψ}

Proof:
By induction on the structure of the proof.

92

Base case: Assignment rule

(ass)
{ϕ[e/x]} x := e {ϕ}

Need to show {ϕ[e/x]} x := e {ϕ} is always valid. That is,

[[x := e]](〈ϕ[e/x]〉) ⊆ 〈ϕ〉.

Observation: [[ϕ[e/x]]]η = [[ϕ]]η
′

where η′ = η[x 7→ [[e]]η]

So if η ∈ 〈ϕ[e/x]〉 then η′ ∈ 〈ϕ〉

Recall: (η, η′′) ∈ [[x := e]] if and only if η′′ = η[x 7→ [[e]]η],

So [[x := e]](η) ∈ 〈ϕ〉 for all η ∈ 〈ϕ[e/x]〉

So [[x := e]](〈ϕ[e/x]〉) ⊆ 〈ϕ〉

93

Base case: Assignment rule

(ass)
{ϕ[e/x]} x := e {ϕ}

Need to show {ϕ[e/x]} x := e {ϕ} is always valid. That is,

[[x := e]](〈ϕ[e/x]〉) ⊆ 〈ϕ〉.

Observation: [[ϕ[e/x]]]η = [[ϕ]]η
′

where η′ = η[x 7→ [[e]]η]

So if η ∈ 〈ϕ[e/x]〉 then η′ ∈ 〈ϕ〉

Recall: (η, η′′) ∈ [[x := e]] if and only if η′′ = η[x 7→ [[e]]η],

So [[x := e]](η) ∈ 〈ϕ〉 for all η ∈ 〈ϕ[e/x]〉

So [[x := e]](〈ϕ[e/x]〉) ⊆ 〈ϕ〉

94

Base case: Assignment rule

(ass)
{ϕ[e/x]} x := e {ϕ}

Need to show {ϕ[e/x]} x := e {ϕ} is always valid. That is,

[[x := e]](〈ϕ[e/x]〉) ⊆ 〈ϕ〉.

Observation: [[ϕ[e/x]]]η = [[ϕ]]η
′

where η′ = η[x 7→ [[e]]η]

So if η ∈ 〈ϕ[e/x]〉 then η′ ∈ 〈ϕ〉

Recall: (η, η′′) ∈ [[x := e]] if and only if η′′ = η[x 7→ [[e]]η],

So [[x := e]](η) ∈ 〈ϕ〉 for all η ∈ 〈ϕ[e/x]〉

So [[x := e]](〈ϕ[e/x]〉) ⊆ 〈ϕ〉

95

Base case: Assignment rule

(ass)
{ϕ[e/x]} x := e {ϕ}

Need to show {ϕ[e/x]} x := e {ϕ} is always valid. That is,

[[x := e]](〈ϕ[e/x]〉) ⊆ 〈ϕ〉.

Observation: [[ϕ[e/x]]]η = [[ϕ]]η
′

where η′ = η[x 7→ [[e]]η]

So if η ∈ 〈ϕ[e/x]〉 then η′ ∈ 〈ϕ〉

Recall: (η, η′′) ∈ [[x := e]] if and only if η′′ = η[x 7→ [[e]]η],

So [[x := e]](η) ∈ 〈ϕ〉 for all η ∈ 〈ϕ[e/x]〉

So [[x := e]](〈ϕ[e/x]〉) ⊆ 〈ϕ〉

96

Base case: Assignment rule

(ass)
{ϕ[e/x]} x := e {ϕ}

Need to show {ϕ[e/x]} x := e {ϕ} is always valid. That is,

[[x := e]](〈ϕ[e/x]〉) ⊆ 〈ϕ〉.

Observation: [[ϕ[e/x]]]η = [[ϕ]]η
′

where η′ = η[x 7→ [[e]]η]

So if η ∈ 〈ϕ[e/x]〉 then η′ ∈ 〈ϕ〉

Recall: (η, η′′) ∈ [[x := e]] if and only if η′′ = η[x 7→ [[e]]η],

So [[x := e]](η) ∈ 〈ϕ〉 for all η ∈ 〈ϕ[e/x]〉

So [[x := e]](〈ϕ[e/x]〉) ⊆ 〈ϕ〉

97

Base case: Assignment rule

(ass)
{ϕ[e/x]} x := e {ϕ}

Need to show {ϕ[e/x]} x := e {ϕ} is always valid. That is,

[[x := e]](〈ϕ[e/x]〉) ⊆ 〈ϕ〉.

Observation: [[ϕ[e/x]]]η = [[ϕ]]η
′

where η′ = η[x 7→ [[e]]η]

So if η ∈ 〈ϕ[e/x]〉 then η′ ∈ 〈ϕ〉

Recall: (η, η′′) ∈ [[x := e]] if and only if η′′ = η[x 7→ [[e]]η],

So [[x := e]](η) ∈ 〈ϕ〉 for all η ∈ 〈ϕ[e/x]〉

So [[x := e]](〈ϕ[e/x]〉) ⊆ 〈ϕ〉

98

Base case: Assignment rule

(ass)
{ϕ[e/x]} x := e {ϕ}

Need to show {ϕ[e/x]} x := e {ϕ} is always valid. That is,

[[x := e]](〈ϕ[e/x]〉) ⊆ 〈ϕ〉.

Observation: [[ϕ[e/x]]]η = [[ϕ]]η
′

where η′ = η[x 7→ [[e]]η]

So if η ∈ 〈ϕ[e/x]〉 then η′ ∈ 〈ϕ〉

Recall: (η, η′′) ∈ [[x := e]] if and only if η′′ = η[x 7→ [[e]]η],

So [[x := e]](η) ∈ 〈ϕ〉 for all η ∈ 〈ϕ[e/x]〉

So [[x := e]](〈ϕ[e/x]〉) ⊆ 〈ϕ〉

99

Inductive case 1: Sequence rule

{ϕ}P {ψ} {ψ}Q {ρ}
(seq)

{ϕ}P;Q {ρ}

Assume {ϕ}P {ψ} and {ψ}Q {ρ} are valid. Need to show that
{ϕ}P;Q {ρ} is valid.

Recall: [[P;Q]] = [[P]]; [[Q]]

So: [[P;Q]](〈ϕ〉) = [[Q]]
(
[[P]](〈ϕ〉)

)
(see Lemma 1(c))

By IH: [[P]](〈ϕ〉) ⊆ 〈ψ〉 and [[Q]](〈ψ〉) ⊆ 〈ρ〉

So: [[Q]]
(
[[P]](〈ϕ〉)

)
⊆ [[Q]]

(
〈ψ〉

)
⊆ 〈ρ〉 (see Lemma 1(a))

100

Inductive case 1: Sequence rule

{ϕ}P {ψ} {ψ}Q {ρ}
(seq)

{ϕ}P;Q {ρ}

Assume {ϕ}P {ψ} and {ψ}Q {ρ} are valid. Need to show that
{ϕ}P;Q {ρ} is valid.

Recall: [[P;Q]] = [[P]]; [[Q]]

So: [[P;Q]](〈ϕ〉) = [[Q]]
(
[[P]](〈ϕ〉)

)
(see Lemma 1(c))

By IH: [[P]](〈ϕ〉) ⊆ 〈ψ〉 and [[Q]](〈ψ〉) ⊆ 〈ρ〉

So: [[Q]]
(
[[P]](〈ϕ〉)

)
⊆ [[Q]]

(
〈ψ〉

)
⊆ 〈ρ〉 (see Lemma 1(a))

101

Inductive case 1: Sequence rule

{ϕ}P {ψ} {ψ}Q {ρ}
(seq)

{ϕ}P;Q {ρ}

Assume {ϕ}P {ψ} and {ψ}Q {ρ} are valid. Need to show that
{ϕ}P;Q {ρ} is valid.

Recall: [[P;Q]] = [[P]]; [[Q]]

So: [[P;Q]](〈ϕ〉) = [[Q]]
(
[[P]](〈ϕ〉)

)
(see Lemma 1(c))

By IH: [[P]](〈ϕ〉) ⊆ 〈ψ〉 and [[Q]](〈ψ〉) ⊆ 〈ρ〉

So: [[Q]]
(
[[P]](〈ϕ〉)

)
⊆ [[Q]]

(
〈ψ〉

)
⊆ 〈ρ〉 (see Lemma 1(a))

102

Inductive case 1: Sequence rule

{ϕ}P {ψ} {ψ}Q {ρ}
(seq)

{ϕ}P;Q {ρ}

Assume {ϕ}P {ψ} and {ψ}Q {ρ} are valid. Need to show that
{ϕ}P;Q {ρ} is valid.

Recall: [[P;Q]] = [[P]]; [[Q]]

So: [[P;Q]](〈ϕ〉) = [[Q]]
(
[[P]](〈ϕ〉)

)
(see Lemma 1(c))

By IH: [[P]](〈ϕ〉) ⊆ 〈ψ〉 and [[Q]](〈ψ〉) ⊆ 〈ρ〉

So: [[Q]]
(
[[P]](〈ϕ〉)

)
⊆ [[Q]]

(
〈ψ〉

)
⊆ 〈ρ〉 (see Lemma 1(a))

103

Inductive case 1: Sequence rule

{ϕ}P {ψ} {ψ}Q {ρ}
(seq)

{ϕ}P;Q {ρ}

Assume {ϕ}P {ψ} and {ψ}Q {ρ} are valid. Need to show that
{ϕ}P;Q {ρ} is valid.

Recall: [[P;Q]] = [[P]]; [[Q]]

So: [[P;Q]](〈ϕ〉) = [[Q]]
(
[[P]](〈ϕ〉)

)
(see Lemma 1(c))

By IH: [[P]](〈ϕ〉) ⊆ 〈ψ〉 and [[Q]](〈ψ〉) ⊆ 〈ρ〉

So: [[Q]]
(
[[P]](〈ϕ〉)

)
⊆ [[Q]]

(
〈ψ〉

)
⊆ 〈ρ〉 (see Lemma 1(a))

104

Inductive case 1: Sequence rule

{ϕ}P {ψ} {ψ}Q {ρ}
(seq)

{ϕ}P;Q {ρ}

Assume {ϕ}P {ψ} and {ψ}Q {ρ} are valid. Need to show that
{ϕ}P;Q {ρ} is valid.

Recall: [[P;Q]] = [[P]]; [[Q]]

So: [[P;Q]](〈ϕ〉) = [[Q]]
(
[[P]](〈ϕ〉)

)
(see Lemma 1(c))

By IH: [[P]](〈ϕ〉) ⊆ 〈ψ〉 and [[Q]](〈ψ〉) ⊆ 〈ρ〉

So: [[Q]]
(
[[P]](〈ϕ〉)

)
⊆ [[Q]]

(
〈ψ〉

)
⊆ 〈ρ〉 (see Lemma 1(a))

105

Two more useful results
Lemma

For R ⊆ Env×Env, predicates ϕ and ψ, and X ⊆ Env:

(a) [[ϕ]](X) = 〈ϕ〉 ∩ X

(b) R(〈ϕ ∧ ψ〉) = ([[ϕ]];R)(〈ψ〉))

Proof (a):

106

Two more useful results
Lemma

For R ⊆ Env×Env, predicates ϕ and ψ, and X ⊆ Env:

(a) [[ϕ]](X) = 〈ϕ〉 ∩ X

(b) R(〈ϕ ∧ ψ〉) = ([[ϕ]];R)(〈ψ〉))

Proof (a):

107

Two more useful results
Lemma

For R ⊆ Env×Env, predicates ϕ and ψ, and X ⊆ Env:

(a) [[ϕ]](X) = 〈ϕ〉 ∩ X

(b) R(〈ϕ ∧ ψ〉) = ([[ϕ]];R)(〈ψ〉))

Proof (a):

η′ ∈ [[ϕ]](X) ⇔ ∃η ∈ X s.t. (η, η′) ∈ [[ϕ]]

⇔ ∃η ∈ X s.t. η = η′ and η ∈ 〈ϕ〉
⇔ η′ ∈ X ∩ 〈ϕ〉

108

Two more useful results
Lemma

For R ⊆ Env×Env, predicates ϕ and ψ, and X ⊆ Env:

(a) [[ϕ]](X) = 〈ϕ〉 ∩ X

(b) R(〈ϕ ∧ ψ〉) = ([[ϕ]];R)(〈ψ〉))

Proof (b):

〈ϕ ∧ ψ〉 = 〈ϕ〉 ∩ 〈ψ〉 = [[ϕ]](〈ψ〉)

So R(〈ϕ ∧ ψ〉) = R
(
[[ϕ]](〈ψ〉)

)
= ([[ϕ]];R)(〈ψ〉) (see Lemma 1(b))

109

Inductive case 2: Conditional rule

{ϕ ∧ g}P {ψ} {ϕ ∧ ¬g}Q {ψ}
(if)

{ϕ} if g then P else Q fi {ψ}

Assume {ϕ ∧ g}P {ψ} and {ϕ ∧ ¬g}Q {ψ} are valid. Need to
show that {ϕ} if g then P else Q fi {ψ} is valid.

Recall: [[if g then P else Q fi]] = [[g ;P]] ∪ [[¬g ;Q]]

[[if g then P else Q fi]](〈ϕ〉)

= [[g ;P]](〈ϕ〉) ∪ [[¬g ;Q]](〈ϕ〉) (see Lemma 1(b))

= [[P]](〈g ∧ ϕ〉) ∪ [[Q]](〈¬g ∧ ϕ〉) (see Lemma 2(b))

⊆ 〈ψ〉 (by IH)

110

Inductive case 2: Conditional rule

{ϕ ∧ g}P {ψ} {ϕ ∧ ¬g}Q {ψ}
(if)

{ϕ} if g then P else Q fi {ψ}

Assume {ϕ ∧ g}P {ψ} and {ϕ ∧ ¬g}Q {ψ} are valid. Need to
show that {ϕ} if g then P else Q fi {ψ} is valid.

Recall: [[if g then P else Q fi]] = [[g ;P]] ∪ [[¬g ;Q]]

[[if g then P else Q fi]](〈ϕ〉)

= [[g ;P]](〈ϕ〉) ∪ [[¬g ;Q]](〈ϕ〉) (see Lemma 1(b))

= [[P]](〈g ∧ ϕ〉) ∪ [[Q]](〈¬g ∧ ϕ〉) (see Lemma 2(b))

⊆ 〈ψ〉 (by IH)

111

Inductive case 2: Conditional rule

{ϕ ∧ g}P {ψ} {ϕ ∧ ¬g}Q {ψ}
(if)

{ϕ} if g then P else Q fi {ψ}

Assume {ϕ ∧ g}P {ψ} and {ϕ ∧ ¬g}Q {ψ} are valid. Need to
show that {ϕ} if g then P else Q fi {ψ} is valid.

Recall: [[if g then P else Q fi]] = [[g ;P]] ∪ [[¬g ;Q]]

[[if g then P else Q fi]](〈ϕ〉)

= [[g ;P]](〈ϕ〉) ∪ [[¬g ;Q]](〈ϕ〉) (see Lemma 1(b))

= [[P]](〈g ∧ ϕ〉) ∪ [[Q]](〈¬g ∧ ϕ〉) (see Lemma 2(b))

⊆ 〈ψ〉 (by IH)

112

Inductive case 2: Conditional rule

{ϕ ∧ g}P {ψ} {ϕ ∧ ¬g}Q {ψ}
(if)

{ϕ} if g then P else Q fi {ψ}

Assume {ϕ ∧ g}P {ψ} and {ϕ ∧ ¬g}Q {ψ} are valid. Need to
show that {ϕ} if g then P else Q fi {ψ} is valid.

Recall: [[if g then P else Q fi]] = [[g ;P]] ∪ [[¬g ;Q]]

[[if g then P else Q fi]](〈ϕ〉)

= [[g ;P]](〈ϕ〉) ∪ [[¬g ;Q]](〈ϕ〉) (see Lemma 1(b))

= [[P]](〈g ∧ ϕ〉) ∪ [[Q]](〈¬g ∧ ϕ〉) (see Lemma 2(b))

⊆ 〈ψ〉 (by IH)

113

Inductive case 2: Conditional rule

{ϕ ∧ g}P {ψ} {ϕ ∧ ¬g}Q {ψ}
(if)

{ϕ} if g then P else Q fi {ψ}

Assume {ϕ ∧ g}P {ψ} and {ϕ ∧ ¬g}Q {ψ} are valid. Need to
show that {ϕ} if g then P else Q fi {ψ} is valid.

Recall: [[if g then P else Q fi]] = [[g ;P]] ∪ [[¬g ;Q]]

[[if g then P else Q fi]](〈ϕ〉)

= [[g ;P]](〈ϕ〉) ∪ [[¬g ;Q]](〈ϕ〉) (see Lemma 1(b))

= [[P]](〈g ∧ ϕ〉) ∪ [[Q]](〈¬g ∧ ϕ〉) (see Lemma 2(b))

⊆ 〈ψ〉 (by IH)

114

Inductive case 2: Conditional rule

{ϕ ∧ g}P {ψ} {ϕ ∧ ¬g}Q {ψ}
(if)

{ϕ} if g then P else Q fi {ψ}

Assume {ϕ ∧ g}P {ψ} and {ϕ ∧ ¬g}Q {ψ} are valid. Need to
show that {ϕ} if g then P else Q fi {ψ} is valid.

Recall: [[if g then P else Q fi]] = [[g ;P]] ∪ [[¬g ;Q]]

[[if g then P else Q fi]](〈ϕ〉)

= [[g ;P]](〈ϕ〉) ∪ [[¬g ;Q]](〈ϕ〉) (see Lemma 1(b))

= [[P]](〈g ∧ ϕ〉) ∪ [[Q]](〈¬g ∧ ϕ〉) (see Lemma 2(b))

⊆ 〈ψ〉 (by IH)

115

Inductive case 2: Conditional rule

{ϕ ∧ g}P {ψ} {ϕ ∧ ¬g}Q {ψ}
(if)

{ϕ} if g then P else Q fi {ψ}

Assume {ϕ ∧ g}P {ψ} and {ϕ ∧ ¬g}Q {ψ} are valid. Need to
show that {ϕ} if g then P else Q fi {ψ} is valid.

Recall: [[if g then P else Q fi]] = [[g ;P]] ∪ [[¬g ;Q]]

[[if g then P else Q fi]](〈ϕ〉)

= [[g ;P]](〈ϕ〉) ∪ [[¬g ;Q]](〈ϕ〉) (see Lemma 1(b))

= [[P]](〈g ∧ ϕ〉) ∪ [[Q]](〈¬g ∧ ϕ〉) (see Lemma 2(b))

⊆ 〈ψ〉 (by IH)

116

Inductive case 3: While rule

{ϕ ∧ g}P {ϕ}
(loop)

{ϕ}while g do P od {ϕ ∧ ¬g}

Assume {ϕ ∧ g}P {ϕ} is valid. Need to show that
{ϕ}while g do P od {ϕ ∧ ¬g}is valid.

Recall: [[while g do P od]] = [[g ;P]]∗; [[¬g]]

[[g ;P]](〈ϕ〉) = [[P]](〈g ∧ ϕ〉) (see Lemma 2(b))

⊆ 〈ϕ〉 (IH)

So [[g ;P]]∗(〈ϕ〉) ⊆ 〈ϕ〉 (see Corollary)

So [[g ;P]]∗; [[¬g]](〈ϕ〉) = [[¬g]]
(
[[g ;P]]∗(〈ϕ〉)

)
(see Lemma 1(c))

⊆ [[¬g]](〈ϕ〉) (see Lemma 1(a))

= 〈¬g ∧ ϕ〉 (see Lemma 2(a))

117

Inductive case 3: While rule

{ϕ ∧ g}P {ϕ}
(loop)

{ϕ}while g do P od {ϕ ∧ ¬g}

Assume {ϕ ∧ g}P {ϕ} is valid. Need to show that
{ϕ}while g do P od {ϕ ∧ ¬g}is valid.

Recall: [[while g do P od]] = [[g ;P]]∗; [[¬g]]

[[g ;P]](〈ϕ〉) = [[P]](〈g ∧ ϕ〉) (see Lemma 2(b))

⊆ 〈ϕ〉 (IH)

So [[g ;P]]∗(〈ϕ〉) ⊆ 〈ϕ〉 (see Corollary)

So [[g ;P]]∗; [[¬g]](〈ϕ〉) = [[¬g]]
(
[[g ;P]]∗(〈ϕ〉)

)
(see Lemma 1(c))

⊆ [[¬g]](〈ϕ〉) (see Lemma 1(a))

= 〈¬g ∧ ϕ〉 (see Lemma 2(a))

118

Inductive case 3: While rule

{ϕ ∧ g}P {ϕ}
(loop)

{ϕ}while g do P od {ϕ ∧ ¬g}

Assume {ϕ ∧ g}P {ϕ} is valid. Need to show that
{ϕ}while g do P od {ϕ ∧ ¬g}is valid.

Recall: [[while g do P od]] = [[g ;P]]∗; [[¬g]]

[[g ;P]](〈ϕ〉) = [[P]](〈g ∧ ϕ〉) (see Lemma 2(b))

⊆ 〈ϕ〉 (IH)

So [[g ;P]]∗(〈ϕ〉) ⊆ 〈ϕ〉 (see Corollary)

So [[g ;P]]∗; [[¬g]](〈ϕ〉) = [[¬g]]
(
[[g ;P]]∗(〈ϕ〉)

)
(see Lemma 1(c))

⊆ [[¬g]](〈ϕ〉) (see Lemma 1(a))

= 〈¬g ∧ ϕ〉 (see Lemma 2(a))

119

Inductive case 3: While rule

{ϕ ∧ g}P {ϕ}
(loop)

{ϕ}while g do P od {ϕ ∧ ¬g}

Assume {ϕ ∧ g}P {ϕ} is valid. Need to show that
{ϕ}while g do P od {ϕ ∧ ¬g}is valid.

Recall: [[while g do P od]] = [[g ;P]]∗; [[¬g]]

[[g ;P]](〈ϕ〉) = [[P]](〈g ∧ ϕ〉) (see Lemma 2(b))

⊆ 〈ϕ〉 (IH)

So [[g ;P]]∗(〈ϕ〉) ⊆ 〈ϕ〉 (see Corollary)

So [[g ;P]]∗; [[¬g]](〈ϕ〉) = [[¬g]]
(
[[g ;P]]∗(〈ϕ〉)

)
(see Lemma 1(c))

⊆ [[¬g]](〈ϕ〉) (see Lemma 1(a))

= 〈¬g ∧ ϕ〉 (see Lemma 2(a))

120

Inductive case 3: While rule

{ϕ ∧ g}P {ϕ}
(loop)

{ϕ}while g do P od {ϕ ∧ ¬g}

Assume {ϕ ∧ g}P {ϕ} is valid. Need to show that
{ϕ}while g do P od {ϕ ∧ ¬g}is valid.

Recall: [[while g do P od]] = [[g ;P]]∗; [[¬g]]

[[g ;P]](〈ϕ〉) = [[P]](〈g ∧ ϕ〉) (see Lemma 2(b))

⊆ 〈ϕ〉 (IH)

So [[g ;P]]∗(〈ϕ〉) ⊆ 〈ϕ〉 (see Corollary)

So [[g ;P]]∗; [[¬g]](〈ϕ〉) = [[¬g]]
(
[[g ;P]]∗(〈ϕ〉)

)
(see Lemma 1(c))

⊆ [[¬g]](〈ϕ〉) (see Lemma 1(a))

= 〈¬g ∧ ϕ〉 (see Lemma 2(a))

121

Inductive case 3: While rule

{ϕ ∧ g}P {ϕ}
(loop)

{ϕ}while g do P od {ϕ ∧ ¬g}

Assume {ϕ ∧ g}P {ϕ} is valid. Need to show that
{ϕ}while g do P od {ϕ ∧ ¬g}is valid.

Recall: [[while g do P od]] = [[g ;P]]∗; [[¬g]]

[[g ;P]](〈ϕ〉) = [[P]](〈g ∧ ϕ〉) (see Lemma 2(b))

⊆ 〈ϕ〉 (IH)

So [[g ;P]]∗(〈ϕ〉) ⊆ 〈ϕ〉 (see Corollary)

So [[g ;P]]∗; [[¬g]](〈ϕ〉) = [[¬g]]
(
[[g ;P]]∗(〈ϕ〉)

)
(see Lemma 1(c))

⊆ [[¬g]](〈ϕ〉) (see Lemma 1(a))

= 〈¬g ∧ ϕ〉 (see Lemma 2(a))

122

Inductive case 3: While rule

{ϕ ∧ g}P {ϕ}
(loop)

{ϕ}while g do P od {ϕ ∧ ¬g}

Assume {ϕ ∧ g}P {ϕ} is valid. Need to show that
{ϕ}while g do P od {ϕ ∧ ¬g}is valid.

Recall: [[while g do P od]] = [[g ;P]]∗; [[¬g]]

[[g ;P]](〈ϕ〉) = [[P]](〈g ∧ ϕ〉) (see Lemma 2(b))

⊆ 〈ϕ〉 (IH)

So [[g ;P]]∗(〈ϕ〉) ⊆ 〈ϕ〉 (see Corollary)

So [[g ;P]]∗; [[¬g]](〈ϕ〉) = [[¬g]]
(
[[g ;P]]∗(〈ϕ〉)

)
(see Lemma 1(c))

⊆ [[¬g]](〈ϕ〉) (see Lemma 1(a))

= 〈¬g ∧ ϕ〉 (see Lemma 2(a))

123

Inductive case 3: While rule

{ϕ ∧ g}P {ϕ}
(loop)

{ϕ}while g do P od {ϕ ∧ ¬g}

Assume {ϕ ∧ g}P {ϕ} is valid. Need to show that
{ϕ}while g do P od {ϕ ∧ ¬g}is valid.

Recall: [[while g do P od]] = [[g ;P]]∗; [[¬g]]

[[g ;P]](〈ϕ〉) = [[P]](〈g ∧ ϕ〉) (see Lemma 2(b))

⊆ 〈ϕ〉 (IH)

So [[g ;P]]∗(〈ϕ〉) ⊆ 〈ϕ〉 (see Corollary)

So [[g ;P]]∗; [[¬g]](〈ϕ〉) = [[¬g]]
(
[[g ;P]]∗(〈ϕ〉)

)
(see Lemma 1(c))

⊆ [[¬g]](〈ϕ〉) (see Lemma 1(a))

= 〈¬g ∧ ϕ〉 (see Lemma 2(a))

124

Inductive case 3: While rule

{ϕ ∧ g}P {ϕ}
(loop)

{ϕ}while g do P od {ϕ ∧ ¬g}

Assume {ϕ ∧ g}P {ϕ} is valid. Need to show that
{ϕ}while g do P od {ϕ ∧ ¬g}is valid.

Recall: [[while g do P od]] = [[g ;P]]∗; [[¬g]]

[[g ;P]](〈ϕ〉) = [[P]](〈g ∧ ϕ〉) (see Lemma 2(b))

⊆ 〈ϕ〉 (IH)

So [[g ;P]]∗(〈ϕ〉) ⊆ 〈ϕ〉 (see Corollary)

So [[g ;P]]∗; [[¬g]](〈ϕ〉) = [[¬g]]
(
[[g ;P]]∗(〈ϕ〉)

)
(see Lemma 1(c))

⊆ [[¬g]](〈ϕ〉) (see Lemma 1(a))

= 〈¬g ∧ ϕ〉 (see Lemma 2(a))
125

Inductive case 4: Consequence rule

ϕ′ → ϕ {ϕ}P {ψ} ψ → ψ′
(cons)

{ϕ′}P {ψ′}

Assume {ϕ}P {ψ} is valid and ϕ′ → ϕ and ψ → ψ′. Need to show
that {ϕ′}P {ψ′} is valid.

Observe: If ϕ′ → ϕ then 〈ϕ′〉 ⊆ 〈ϕ〉

[[P]](〈ϕ′〉) ⊆ [[P]](〈ϕ〉) (see Lemma 1(a))

⊆ 〈ψ〉 (IH)

⊆ 〈ψ′〉

126

Inductive case 4: Consequence rule

ϕ′ → ϕ {ϕ}P {ψ} ψ → ψ′
(cons)

{ϕ′}P {ψ′}

Assume {ϕ}P {ψ} is valid and ϕ′ → ϕ and ψ → ψ′. Need to show
that {ϕ′}P {ψ′} is valid.

Observe: If ϕ′ → ϕ then 〈ϕ′〉 ⊆ 〈ϕ〉

[[P]](〈ϕ′〉) ⊆ [[P]](〈ϕ〉) (see Lemma 1(a))

⊆ 〈ψ〉 (IH)

⊆ 〈ψ′〉

127

Inductive case 4: Consequence rule

ϕ′ → ϕ {ϕ}P {ψ} ψ → ψ′
(cons)

{ϕ′}P {ψ′}

Assume {ϕ}P {ψ} is valid and ϕ′ → ϕ and ψ → ψ′. Need to show
that {ϕ′}P {ψ′} is valid.

Observe: If ϕ′ → ϕ then 〈ϕ′〉 ⊆ 〈ϕ〉

[[P]](〈ϕ′〉) ⊆ [[P]](〈ϕ〉) (see Lemma 1(a))

⊆ 〈ψ〉 (IH)

⊆ 〈ψ′〉

128

Inductive case 4: Consequence rule

ϕ′ → ϕ {ϕ}P {ψ} ψ → ψ′
(cons)

{ϕ′}P {ψ′}

Assume {ϕ}P {ψ} is valid and ϕ′ → ϕ and ψ → ψ′. Need to show
that {ϕ′}P {ψ′} is valid.

Observe: If ϕ′ → ϕ then 〈ϕ′〉 ⊆ 〈ϕ〉

[[P]](〈ϕ′〉) ⊆ [[P]](〈ϕ〉) (see Lemma 1(a))

⊆ 〈ψ〉 (IH)

⊆ 〈ψ′〉

129

Inductive case 4: Consequence rule

ϕ′ → ϕ {ϕ}P {ψ} ψ → ψ′
(cons)

{ϕ′}P {ψ′}

Assume {ϕ}P {ψ} is valid and ϕ′ → ϕ and ψ → ψ′. Need to show
that {ϕ′}P {ψ′} is valid.

Observe: If ϕ′ → ϕ then 〈ϕ′〉 ⊆ 〈ϕ〉

[[P]](〈ϕ′〉) ⊆ [[P]](〈ϕ〉) (see Lemma 1(a))

⊆ 〈ψ〉 (IH)

⊆ 〈ψ′〉

130

