COMP2111 Week 9 Term 1, 2024 Hoare Logic

1

Summary

- \mathcal{L} : A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic
- Handling termination
- Adding non-determinism

Aims

We've seen how to use Hoare logic to verify programs.

But how do we know that Hoare logic *works*? Do we need to take the rules on faith? Or can we prove that it works?

Aims

We've seen how to use Hoare logic to verify programs.

But how do we know that Hoare logic *works*? Do we need to take the rules on faith? Or can we prove that it works?

We've already asked (and answered) a similar question about a different logic (natural deduction).

Informal semantics

Hoare logic gives a proof of $\{\varphi\} P \{\psi\}$, that is: $\vdash \{\varphi\} P \{\psi\}$ (axiomatic semantics)

What does it mean for $\{\varphi\} P \{\psi\}$ to be **valid**, that is: $\models \{\varphi\} P \{\psi\}$?

Informal semantics

Hoare logic gives a proof of $\{\varphi\} P \{\psi\}$, that is: $\vdash \{\varphi\} P \{\psi\}$ (axiomatic semantics)

What does it mean for $\{\varphi\} P \{\psi\}$ to be **valid**, that is: $\models \{\varphi\} P \{\psi\}$?

We need a *semantics* for \mathcal{L} .

Informal semantics

Hoare logic gives a proof of $\{\varphi\} P \{\psi\}$, that is: $\vdash \{\varphi\} P \{\psi\}$ (axiomatic semantics)

What does it mean for $\{\varphi\} P \{\psi\}$ to be **valid**, that is: $\models \{\varphi\} P \{\psi\}$?

We need a *semantics* for \mathcal{L} .

We *could* use the LTS semantics of \mathcal{L} from Week 8. We will use a *denotational* style instead, similar to Assignment 1 Problem 1 but systematic.

・ロト ・ 回 ト ・ 三 ト ・ 三 ・ つへの

Informal semantics: Programs

We know (from Assignment 1 Problem 1) that programs can be modelled as *relations* between initial and final states.

What is a state?

What is a state?

Two approaches:

• Concrete: from a physical perspective

• Abstract: from a mathematical perspective

What is a state?

Two approaches:

- Concrete: from a physical perspective
 - States are memory configurations, register contents, etc.
 - Store of variables and the values associated with them
- Abstract: from a mathematical perspective

What is a state?

Two approaches:

- Concrete: from a physical perspective
 - States are memory configurations, register contents, etc.
 - Store of variables and the values associated with them
- Abstract: from a mathematical perspective
 - The pre-/postcondition predicates *hold* in a state
 - ⇒ States are **logical interpretations** (Model + Environment)

What is a state?

Two approaches:

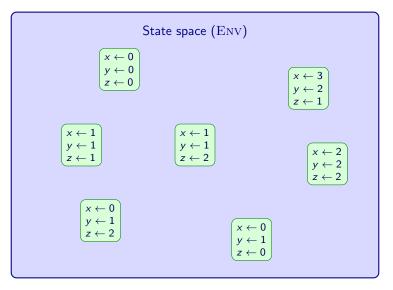
- Concrete: from a physical perspective
 - States are memory configurations, register contents, etc.
 - Store of variables and the values associated with them
- Abstract: from a mathematical perspective
 - The pre-/postcondition predicates hold in a state
 - ⇒ States are **logical interpretations** (Model + Environment)
 - There is only one model of interest: standard interpretations of arithmetical symbols

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

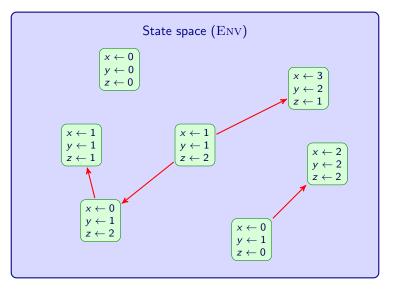
What is a state?

Two approaches:

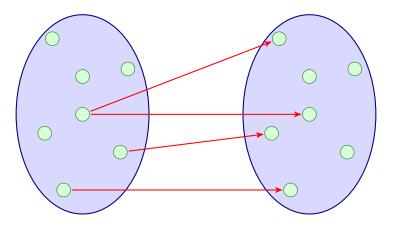
- Concrete: from a physical perspective
 - States are memory configurations, register contents, etc.
 - Store of variables and the values associated with them
- Abstract: from a mathematical perspective
 - The pre-/postcondition predicates hold in a state
 - ⇒ States are **logical interpretations** (Model + Environment)
 - There is only one model of interest: standard interpretations of arithmetical symbols
 - \Rightarrow States are fully determined by **environments**
 - \Rightarrow States are functions that map variables to values



Informal semantics: States and Programs



Informal semantics: States and Programs



Semantics for ${\mathcal L}$

An **environment** or **state** is a function from variables to (numeric) values. We denote by ENV the set of all environments.

NB

An environment, η , assigns a numeric value $\llbracket e \rrbracket^{\eta}$ to all expressions e, and a boolean value $\llbracket b \rrbracket^{\eta}$ to all boolean expressions b.

Semantics for ${\mathcal L}$

An **environment** or **state** is a function from variables to (numeric) values. We denote by E_{NV} the set of all environments.

NB

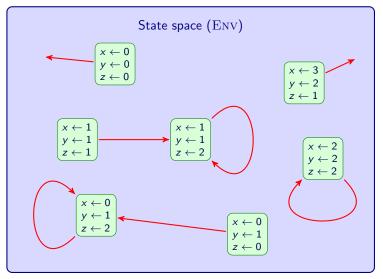
An environment, η , assigns a numeric value $\llbracket e \rrbracket^{\eta}$ to all expressions e, and a boolean value $\llbracket b \rrbracket^{\eta}$ to all boolean expressions b.

Given a program P of \mathcal{L} , we define $\llbracket P \rrbracket$ to be a **binary relation** on ENV in the following manner...

Assignment

$(\eta, \eta') \in \llbracket x := e \rrbracket$ if, and only if $\eta' = \eta [x \mapsto \llbracket e \rrbracket^{\eta}]$

Assignment: [z := 2]



Recall

If R and S are binary relations, then the **relational composition** of R and S, R; S is the relation:

 $R; S := \{(a, c) : \exists b \text{ such that } (a, b) \in R \text{ and } (b, c) \in S\}$

If $R \subseteq A \times B$ is a relation, and $X \subseteq A$, then the **image of** X **under** R, R(X) is the subset of B defined as:

 $R(X) := \{ b \in B : \exists a \in X \text{ such that } (a, b) \in R \}.$

$\llbracket P; Q \rrbracket = \llbracket P \rrbracket; \llbracket Q \rrbracket$

where, on the RHS, ; is relational composition.

Conditional, first attempt

$$\llbracket \text{if } b \text{ then } P \text{ else } Q \text{ fi} \rrbracket = \begin{cases} \llbracket P \rrbracket & \text{if } \llbracket b \rrbracket^{\eta} = \texttt{true} \\ \llbracket Q \rrbracket & \text{otherwise.} \end{cases}$$

Conditional, first attempt

$$\llbracket \text{if } b \text{ then } P \text{ else } Q \text{ fi} \rrbracket = \begin{cases} \llbracket P \rrbracket & \text{if } \llbracket b \rrbracket^{\eta} = \texttt{true} \\ \llbracket Q \rrbracket & \text{otherwise.} \end{cases}$$

We'd like to avoid mentioning η on the LHS, so this won't do.

Detour: Predicates as programs

A boolean expression b defines a subset (or unary relation) of ENV:

$$\langle b
angle = \{ \eta \ : \ \llbracket b
rbracket^\eta = \mathtt{true} \}$$

This can be extended to a binary relation (i.e. a program):

 $\llbracket b \rrbracket = \{ (\eta, \eta) : \eta \in \langle b \rangle \}$

Detour: Predicates as programs

A boolean expression b defines a subset (or unary relation) of ENV:

$$\langle b
angle = \{ \eta \ : \ \llbracket b
rbracket^\eta = \mathtt{true} \}$$

This can be extended to a binary relation (i.e. a program):

 $\llbracket b \rrbracket = \{ (\eta, \eta) : \eta \in \langle b \rangle \}$

Intuitively, b corresponds to the program

if b then skip else abort fi

イロト イロト イヨト イヨト ヨー わへの

Conditional, better attempt

$\llbracket \text{if } b \text{ then } P \text{ else } Q \text{ fi} \rrbracket = \llbracket b; P \rrbracket \cup \llbracket \neg b; Q \rrbracket$

while b do P od

- Do 0 or more executions of P while b holds
- Terminate when *b* does not hold

while b do P od

- Do 0 or more executions of (*b*; *P*)
- Terminate with an execution of $\neg b$

while b do P od

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Do 0 or more executions of (*b*; *P*)
- Terminate with an execution of $\neg b$ How to do "0 or more" executions of (b; P)?

Reflexive and transitive closure

Given a binary relation $R \subseteq E \times E$, the *transitive closure of* R, R^* is defined inductively by the following rules:

$x \in E$	хRу	y
$\overline{x R^* x}$	x R* z	

$\llbracket while \ b \ do \ P \ od \rrbracket = \llbracket b; P \rrbracket^*; \llbracket \neg b \rrbracket$

イロト イロト イヨト イヨト ヨー わへの

- Do 0 or more executions of (b; P)
- Conclude with an execution of $\neg b$

Validity

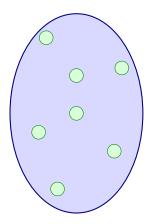
A Hoare triple is **valid**, written $\models \{\varphi\} P \{\psi\}$ if

 $\llbracket P \rrbracket (\langle \varphi \rangle) \subseteq \langle \psi \rangle.$

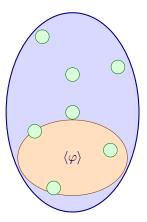
That is, the relational image under $[\![P]\!]$ of the set of states where φ holds is contained in the set of states where ψ holds.

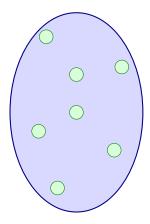
Validity



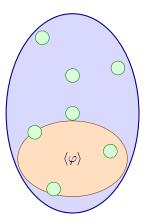


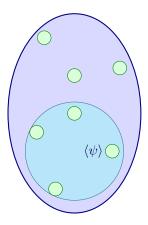
Validity



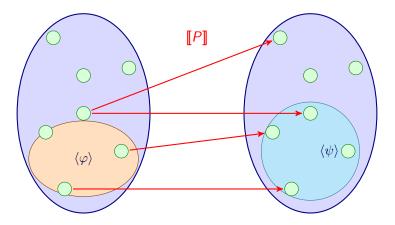


Validity

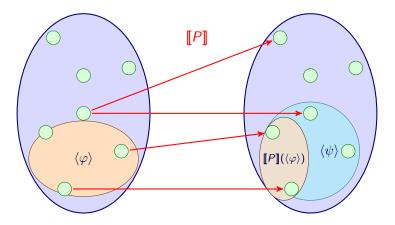




Validity



Validity



Soundness of Hoare Logic

Theorem

 $\mathit{lf} \vdash \{\varphi\} \mathit{P} \{\psi\} \mathit{then} \models \{\varphi\} \mathit{P} \{\psi\}$

Theorem (Gödel's Incompleteness Theorem)

There is no proof system that can prove every valid first-order sentence about arithmetic over the natural numbers.

Theorem (Gödel's Incompleteness Theorem)

There is no proof system that can prove every valid first-order sentence about arithmetic over the natural numbers.

 \Rightarrow There are true statements that do not have a proof.

Theorem (Gödel's Incompleteness Theorem)

There is no proof system that can prove every valid first-order sentence about arithmetic over the natural numbers.

- \Rightarrow There are true statements that do not have a proof.
- ⇒ Because of (cons) there are valid triples that result from valid, but unprovable, consequences.

イロン 不同 とくほど 不良 とうほ

Theorem (Gödel's Incompleteness Theorem)

There is no proof system that can prove every valid first-order sentence about arithmetic over the natural numbers.

- \Rightarrow There are true statements that do not have a proof.
- ⇒ Because of (cons) there are valid triples that result from valid, but unprovable, consequences.
- \Rightarrow Hoare Logic is not complete.

Relative completeness of Hoare Logic

Theorem (Relative completeness of Hoare Logic) With an oracle that decides the validity of predicates,

if $\models \{\varphi\} P \{\psi\}$ then $\vdash \{\varphi\} P \{\psi\}$.

Intuitively: Hoare logic is no more incomplete than the logic used to express the pre- and postconditions.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Summary

- \mathcal{L} : A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic
- Handling termination
- Adding non-determinism

Termination

Hoare triples for partial correctness:

 $\left\{\varphi\right\} \textit{P}\left\{\psi\right\}$

Asserts ψ holds if *P* terminates.

That's just a safety property. Let's add liveness!

Termination

Hoare triples for partial correctness:

 $\left\{\varphi\right\} P\left\{\psi\right\}$

Asserts ψ holds if *P* terminates.

That's just a safety property. Let's add liveness!

Hoare triples for total correctness:

 $\left[\varphi\right] P\left[\psi\right]$

Asserts:

If φ holds at a starting state, and *P* is executed; then *P* will terminate and ψ will hold in the resulting state.

Warning

Termination is hard!

• Algorithmic limitations (e.g. Halting problem)

Warning

Termination is hard!

- Algorithmic limitations (e.g. Halting problem)
- Mathematical limitations

Example

```
COLLATZ

while n > 1 do

if n\%2 = 0

then

n := n/2

else

n := 3 * n + 1

fi

od
```

Total correctness

How can we show:

 $[(m \ge 0) \land (n > 0)] \operatorname{Pow} [r = n^m]?$

Total correctness

How can we show:

$$[(m \ge 0) \land (n > 0)] \operatorname{Pow} [r = n^m]?$$

Use Hoare Logic for total correctness:

- (ass), (seq), (cond), and (cons) rules all the same
- Modified (loop) rule

Rules for total correctness

$$\boxed{[\varphi[e/x]] := e[\varphi]} \quad (ass)$$

$$\frac{\left[\varphi\right] P\left[\psi\right] \quad \left[\psi\right] Q\left[\rho\right]}{\left[\varphi\right] P; Q\left[\rho\right]} \quad (\text{seq})$$

$$\frac{[\varphi \land g] P[\psi]}{[\varphi] \text{ if } g \text{ then } P \text{ else } Q \text{ fi}[\psi]} \quad \text{(if)}$$

$$\frac{\varphi' \to \varphi \quad [\varphi] P[\psi] \quad \psi \to \psi'}{[\varphi'] P[\psi']} \quad (\text{cons})$$

Terminating while loops

 $\{\varphi\}$ while $b \mbox{ do } P \mbox{ od } \{\psi\}$

Partial correctness:

Find an invariant *I* such that:

- $\varphi \rightarrow I$
- $\{I \land b\} P \{I\}$
- $(I \land \neg b) \rightarrow \psi$

(establish) (maintain) (conclude)

Terminating while loops

$[\varphi]$ while $b \mbox{ do } P \mbox{ od } [\psi]$

Partial correctness:

Find an invariant *I* such that:

φ → I
[I ∧ b] P [I]
(I ∧ ¬b) → ψ

Show termination:

Find a **variant** v such that:

- $(I \wedge b) \rightarrow v > 0$
- $[I \wedge b \wedge v = N] P [v < N]$

(establish) (maintain) (conclude)

(positivity) (progress)

Loop rule for total correctness

$$\frac{[\varphi \land g \land (v = N)] P [\varphi \land (v < N)] \quad (\varphi \land g) \to (v > 0)}{[\varphi] \text{ while } g \text{ do } P \text{ od } [\varphi \land \neg g]} \quad (\text{loop})$$

Pow	
	$\{init: \ (m \ge 0) \land (n > 0)\}$
	$\{(1=n^0)\wedge (0\leq m)\wedge init\}$
r := 1;	$\{(r=n^0) \land (0 \le m) \land init\}$
$\begin{vmatrix} r := 1; \\ i := 0; \end{vmatrix}$	
	{Inv}
while $i < m$ do	$\{\operatorname{Inv} \land (i < m)\}$
	$\{(r*n = n^{i+1}) \land (i+1 \le m) \land \text{ init} \}$
r := r * n;	$\{(r = n^{i+1}) \land (i+1 \le m) \land \text{ init} \}$
i := i + 1	{Inv }
od	$\{Inv \land (i \ge m)\}$
	$\{r=n^m\}$

What is a suitable variant?

Pow	
	$\{init:\ (m\geq 0)\land (n>0)\}$
	$\{(1=n^0)\wedge (0\leq m)\wedge init\}$
r := 1;	$\{(r=n^0) \land (0 \le m) \land init\}$
$\begin{vmatrix} r := 1; \\ i := 0; \end{vmatrix}$	
	{Inv}
while $i < m$ do	$\{\operatorname{Inv} \land (i < m)\}$
	$\{(r*n = n^{i+1}) \land (i+1 \le m) \land \text{ init} \}$
r := r * n;	$\{(r = n^{i+1}) \land (i+1 \le m) \land \text{ init} \}$
i := i + 1	{Inv }
od	$\{\operatorname{Inv}\wedge(i\geq m)\}$
	$\{r=n^m\}$

Pow	
	$\{init:\ (m\geq 0)\land (n>0)\}$
	$\{(1=n^0)\wedge (0\leq m)\wedge init\}$
r := 1; i := 0;	$\{(r=n^0)\wedge (0\leq m)\wedge init\}$
i := 0;	
	{Inv}
while $i < m$ do	$\{Inv \land (i < m) \land (v = N)\}$
	$\{(r*n = n^{i+1}) \land (i+1 \le m) \land \text{ init} \}$
r := r * n;	$\{(r = n^{i+1}) \land (i+1 \le m) \land \text{ init} \}$
i := i + 1	{Inv }
od	$\{Inv \land (i \ge m)\}$
	$\{r=n^m\}$

Pow	
	$\{init:\ (m\geq 0)\land (n>0)\}$
	$\{(1=n^0)\wedge (0\leq m)\wedge init\}$
$\begin{vmatrix} r := 1; \\ i := 0; \end{vmatrix}$	$\{(r=n^0)\wedge (0\leq m)\wedge init\}$
i := 0;	
	{Inv}
while $i < m$ do	$\{Inv \land (i < m) \land (v = N)\}$
	$\{(r*n = n^{i+1}) \land (i+1 \le m) \land \text{ init} \}$
r := r * n;	$\{(r = n^{i+1}) \land (i+1 \le m) \land \text{ init} \}$
i := i + 1	$\{Inv \land (v < N)\}$
od	$\{Inv \land (i \ge m)\}$
	$\{r=n^m\}$

Pow	
	$\{init:\ (m\geq 0)\land (n>0)\}$
	$\{(1=n^0)\wedge (0\leq m)\wedge init\}$
r := 1;	$\{(r=n^0)\wedge (0\leq m)\wedge init\}$
i := 0;	
	{Inv}
while $i < m$ do	$\{Inv \land (i < m) \land (v = N)\}$
	$\{(r*n = n^{i+1}) \land (i+1 \le m) \land \text{ init} \}$
r := r * n;	$\{(r = n^{i+1}) \land (i+1 \le m) \land \text{init} \land (v = N)\}$
i := i + 1	$\{Inv \land (\nu < N)\}$
od	$\{Inv \land (i \ge m)\}$
	$\{r=n^m\}$

Pow	
	$\{init:\ (m\geq 0)\land (n>0)\}$
	$\{(1=n^0)\wedge (0\leq m)\wedge init\}$
r := 1;	$\{(r=n^0)\wedge (0\leq m)\wedge init\}$
i := 0;	
	{Inv}
while $i < m$ do	$\{Inv \land (i < m) \land (v = N)\}$
	$\{(r * n = n^{i+1}) \land (i+1 \le m) \land \text{init} \land (v = N)\}$
r := r * n;	$\{(r = n^{i+1}) \land (i+1 \le m) \land \text{init} \land (v = N)\}$
i := i + 1	$\{Inv \land (\nu < N)\}$
od	$\{Inv \land (i \ge m)\}$
	$\{r=n^m\}$

Additional proof obligations

init:
$$(m \ge 0) \land (n > 0)$$

Inv: $(r = n^i) \land (i \le m) \land \text{init}$
 $v : m - i$

•
$$\ln v \wedge (i < m) \rightarrow (v > 0)$$

• $[v = N] i := i + 1 [v < N]$

Additional proof obligations

Total correctness Hoare logic is designed to prove partial correctness and termination at the same time.

You can also do them separately:

- **1** Prove a partial correctness Hoare triple.
- 2 Find a variant for every loop.

Doing it completely separate isn't always possible: sometimes, termination depends on the invariant.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Summary

- \mathcal{L} : A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic
- Handling termination
- Adding non-determinism

Non-determinism

Non-determinism involves the computational model branching into one of several directions.

Any branch can happen (decision is not under our control).

Non-determinism

Why add non-determinism?

- More general than deterministic behaviour
- Sometimes useful for modelling interaction (c.f. coffee machines).
- Useful for abstraction (abstracted code is easier to reason about)

We relax the Conditional and Loop commands in $\ensuremath{\mathcal{L}}$ to give us non-deterministic behaviour.

The programs of \mathcal{L}^+ are defined as:

Assign: x := e, where x is a variable and e is an expression

Predicate: φ , where φ is a predicate

Sequence: P; Q, where P and Q are programs

We relax the Conditional and Loop commands in $\ensuremath{\mathcal{L}}$ to give us non-deterministic behaviour.

The programs of \mathcal{L}^+ are defined as:

Assign: x := e, where x is a variable and e is an expression

Predicate: φ , where φ is a predicate

Sequence: P; Q, where P and Q are programs

Choice: P + Q, where P and Q are programs; intuitively, make a non-deterministic choice between P and Q

・ロト ・ 回 ト ・ 三 ト ・ 三 ・ つへの

69

We relax the Conditional and Loop commands in $\ensuremath{\mathcal{L}}$ to give us non-deterministic behaviour.

The programs of \mathcal{L}^+ are defined as:

Assign: x := e, where x is a variable and e is an expression

Predicate: φ , where φ is a predicate

Sequence: P; Q, where P and Q are programs

Choice: P + Q, where P and Q are programs; intuitively, make a non-deterministic choice between P and Q

Loop: *P*^{*}, where *P* is a program; intuitively, loop for a non-deterministic number of iterations

We relax the Conditional and Loop commands in $\ensuremath{\mathcal{L}}$ to give us non-deterministic behaviour.

The programs of \mathcal{L}^+ are defined as:

Assign: x := e, where x is a variable and e is an expression

- **Predicate:** φ , where φ is a predicate
- **Sequence:** P; Q, where P and Q are programs
 - **Choice:** P + Q, where P and Q are programs; intuitively, make a non-deterministic choice between P and Q
 - **Loop:** *P*^{*}, where *P* is a program; intuitively, loop for a non-deterministic number of iterations

 $P ::: (x := e) | \varphi | P_1; P_2 | P_1 + P_2 | P_1^*$

\mathcal{L}^+ : a simple language with non-determinism

$$P :: (x := e) \mid \varphi \mid P_1; P_2 \mid P_1 + P_2 \mid P_1^*$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

NB

 \mathcal{L} can be defined in \mathcal{L}^+ by defining:

- if b then P else Q od = $(b; P) + (\neg b; Q)$
- while b do P od = $(b; P)^*; \neg b$

Example

Example

A program in \mathcal{L}^+ that non-deterministically checks if $(x \lor y) \land (\neg x \lor \neg z) \land (\neg y \lor z)$ is satisfiable:

SAT

$$(x := 0) + (x := 1);$$

 $(y := 0) + (y := 1);$
 $(z := 0) + (z := 1);$

Example

Example

A program in \mathcal{L}^+ that non-deterministically checks if $(x \lor y) \land (\neg x \lor \neg z) \land (\neg y \lor z)$ is satisfiable:

SAT

$$(x := 0) + (x := 1);$$

 $(y := 0) + (y := 1);$
 $(z := 0) + (z := 1);$
if $((x = 1) \lor (y = 1)) \land$
 $((x = 0) \lor (z = 0)) \land$
 $((y = 0) \lor (z = 1))$

Example

Example

A program in \mathcal{L}^+ that non-deterministically checks if $(x \lor y) \land (\neg x \lor \neg z) \land (\neg y \lor z)$ is satisfiable:

SAT

$$(x := 0) + (x := 1);$$

 $(y := 0) + (y := 1);$
 $(z := 0) + (z := 1);$
if $((x = 1) \lor (y = 1)) \land$
 $((x = 0) \lor (z = 0)) \land$
 $((y = 0) \lor (z = 1))$
then $r := 1$
else $r := 0$
fi

The formula is satisfiable if SAT could set r to 1.

Proof rules

Hoare logic rules are cleaner:

$$\frac{\{\varphi\} P\{\psi\} \quad \{\varphi\} Q\{\psi\}}{\{\varphi\} P + Q\{\psi\}} \quad \text{(choice)}$$

$$\frac{\left\{\varphi\right\} P\left\{\varphi\right\}}{\left\{\varphi\right\} P^{*}\left\{\varphi\right\}} \quad \text{(loop)}$$

Semantics

Semantics is as for \mathcal{L} , except:

$\llbracket P + Q \rrbracket = \llbracket P \rrbracket \cup \llbracket Q \rrbracket \qquad \qquad \llbracket P^* \rrbracket = \llbracket P \rrbracket^*$

Bonus slides

What follows is a proof that Hoare logic is sound.

We most likely won't have time to do any of this in the lectures.

Summary

- Set theory revisited
- Soundness of Hoare Logic
- Completeness of Hoare Logic

Summary

- Set theory revisited
- Soundness of Hoare Logic
- Completeness of Hoare Logic

Lemma

For any binary relations $R, S \subseteq X \times Y$ and subsets $A, B \subseteq X$:

$$If A \subseteq B then R(A) \subseteq R(B)$$

$$P(A) \cup S(A) = (R \cup S)(A)$$

$$R(S(A)) = (S; R)(A)$$

Lemma

For any binary relations $R, S \subseteq X \times Y$ and subsets $A, B \subseteq X$:

$$If A \subseteq B \ then \ R(A) \subseteq R(B)$$

$$P(A) \cup S(A) = (R \cup S)(A)$$

$$(S(A)) = (S; R)(A)$$

Proof (a):

Lemma

For any binary relations $R, S \subseteq X \times Y$ and subsets $A, B \subseteq X$:

$$If A \subseteq B \ then \ R(A) \subseteq R(B)$$

$$P(A) \cup S(A) = (R \cup S)(A)$$

$$(S(A)) = (S; R)(A)$$

Proof (a):

 $y \in R(A) \iff \exists x \in A \text{ such that } (x, y) \in R$ $\Rightarrow \exists x \in B \text{ such that } (x, y) \in R$ $\Leftrightarrow y \in R(B)$

・ロト ・ 回 ト ・ 三 ト ・ 三 ・ つへの

Lemma

For any binary relations $R, S \subseteq X \times Y$ and subsets $A, B \subseteq X$:

$$If A \subseteq B \ then \ R(A) \subseteq R(B)$$

$$P(A) \cup S(A) = (R \cup S)(A)$$

$$(S(A)) = (S; R)(A)$$

Proof (b):

Lemma

For any binary relations $R, S \subseteq X \times Y$ and subsets $A, B \subseteq X$:

$$If A \subseteq B \ then \ R(A) \subseteq R(B)$$

$$P(A) \cup S(A) = (R \cup S)(A)$$

$$(S(A)) = (S; R)(A)$$

Proof (b):

$$y \in R(A) \cup S(A) \iff y \in R(A) \text{ or } y \in S(A)$$

$$\Leftrightarrow \exists x \in A \text{ s.t. } (x, y) \in R \text{ or } \exists x \in A \text{ s.t. } (x, y) \in S$$

$$\Leftrightarrow \exists x \in A \text{ s.t. } (x, y) \in R \text{ or } (x, y) \in S$$

$$\Leftrightarrow \exists x \in A \text{ s.t. } (x, y) \in (R \cup S)$$

$$\Leftrightarrow y \in (R \cup S)(A)$$

Lemma

For any binary relations $R, S \subseteq X \times Y$ and subsets $A, B \subseteq X$:

$$If A \subseteq B \ then \ R(A) \subseteq R(B)$$

$$P(A) \cup S(A) = (R \cup S)(A)$$

$$(S(A)) = (S; R)(A)$$

Proof (c):

Lemma

For any binary relations $R, S \subseteq X \times Y$ and subsets $A, B \subseteq X$:

$$If A \subseteq B \ then \ R(A) \subseteq R(B)$$

$$P(A) \cup S(A) = (R \cup S)(A)$$

Proof (c):

$$z \in R(S(A)) \Leftrightarrow \exists y \in S(A) \text{ s.t. } (y, z) \in R$$

$$\Leftrightarrow \exists x \in A, y \in S(A) \text{ s.t. } (x, y) \in S \text{ and } (y, z) \in R$$

$$\Leftrightarrow \exists x \in A \text{ s.t. } (x, z) \in (S; R)$$

$$\Leftrightarrow z \in (S; R)(A)$$

Corollary

If $R(A) \subseteq A$ then $R^*(A) \subseteq A$

Reformulated: assuming $R(A) \subseteq A$, $x \in A$, and $x R^* y$, prove $y \in A$.

Proof is by induction on the derivation of $x R^* y$.

(B) Trivial when x = y.

We know that x ∈ A, x R y and y R* z. Because R(A) ⊆ A, we have y ∈ A. By the induction hypothesis, z ∈ A.

Summary

- Set theory revisited
- Soundness of Hoare Logic
- Completeness of Hoare Logic

Soundness of Hoare Logic

Theorem

 $\mathit{If} \vdash \{\varphi\} \mathit{P} \{\psi\} \textit{ then} \models \{\varphi\} \mathit{P} \{\psi\}$

Soundness of Hoare Logic

Theorem

If $\vdash \{\varphi\} P \{\psi\}$ then $\models \{\varphi\} P \{\psi\}$

Proof:

Soundness of Hoare Logic

Theorem

If $\vdash \{\varphi\} P \{\psi\}$ then $\models \{\varphi\} P \{\psi\}$

Proof: By induction on the structure of the proof.

$$\frac{1}{\left\{\varphi[e/x]\right\}x := e\left\{\varphi\right\}} \quad (ass)$$

$$\frac{1}{\{\varphi[e/x]\} x := e \{\varphi\}} \quad (ass)$$

Need to show $\{\varphi[e/x]\} := e \{\varphi\}$ is always valid. That is,

 $\llbracket x := e \rrbracket (\langle \varphi[e/x] \rangle) \subseteq \langle \varphi \rangle.$

$$\frac{1}{\{\varphi[e/x]\} x := e \{\varphi\}} \quad (ass)$$

Need to show $\{\varphi[e/x]\} x := e \{\varphi\}$ is always valid. That is,

 $\llbracket x := e \rrbracket (\langle \varphi[e/x] \rangle) \subseteq \langle \varphi \rangle.$

 $\text{Observation: } \llbracket \varphi[e/x] \rrbracket^{\eta} = \llbracket \varphi \rrbracket^{\eta'} \text{ where } \eta' = \eta[x \mapsto \llbracket e \rrbracket^{\eta}]$

$$\frac{1}{\{\varphi[e/x]\}x := e\{\varphi\}} \quad (ass)$$

Need to show $\{\varphi[e/x]\} x := e \{\varphi\}$ is always valid. That is,

 $\llbracket x := e \rrbracket (\langle \varphi[e/x] \rangle) \subseteq \langle \varphi \rangle.$

Observation: $\llbracket \varphi[e/x] \rrbracket^{\eta} = \llbracket \varphi \rrbracket^{\eta'}$ where $\eta' = \eta[x \mapsto \llbracket e \rrbracket^{\eta}]$ So if $\eta \in \langle \varphi[e/x] \rangle$ then $\eta' \in \langle \varphi \rangle$

$$\frac{1}{\{\varphi[e/x]\} x := e \{\varphi\}} \quad (ass)$$

Need to show $\{\varphi[e/x]\} := e \{\varphi\}$ is always valid. That is,

 $\llbracket x := e \rrbracket (\langle \varphi[e/x] \rangle) \subseteq \langle \varphi \rangle.$

Observation: $\llbracket \varphi[e/x] \rrbracket^{\eta} = \llbracket \varphi \rrbracket^{\eta'}$ where $\eta' = \eta[x \mapsto \llbracket e \rrbracket^{\eta}]$ So if $\eta \in \langle \varphi[e/x] \rangle$ then $\eta' \in \langle \varphi \rangle$ Recall: $(\eta, \eta'') \in \llbracket x := e \rrbracket$ if and only if $\eta'' = \eta[x \mapsto \llbracket e \rrbracket^{\eta}]$,

・ロ・・西・・ヨ・・ヨ・ うらぐ

$$\frac{1}{\{\varphi[e/x]\} x := e \{\varphi\}} \quad (ass)$$

Need to show $\{\varphi[e/x]\} := e \{\varphi\}$ is always valid. That is,

 $\llbracket x := e \rrbracket (\langle \varphi[e/x] \rangle) \subseteq \langle \varphi \rangle.$

Observation: $\llbracket \varphi[e/x] \rrbracket^{\eta} = \llbracket \varphi \rrbracket^{\eta'}$ where $\eta' = \eta[x \mapsto \llbracket e \rrbracket^{\eta}]$ So if $\eta \in \langle \varphi[e/x] \rangle$ then $\eta' \in \langle \varphi \rangle$ Recall: $(\eta, \eta'') \in \llbracket x := e \rrbracket$ if and only if $\eta'' = \eta[x \mapsto \llbracket e \rrbracket^{\eta}]$, So $\llbracket x := e \rrbracket(\eta) \in \langle \varphi \rangle$ for all $\eta \in \langle \varphi[e/x] \rangle$

$$\frac{1}{\{\varphi[e/x]\} x := e \{\varphi\}} \quad (ass)$$

Need to show $\{\varphi[e/x]\} := e \{\varphi\}$ is always valid. That is,

 $\llbracket x := e \rrbracket (\langle \varphi[e/x] \rangle) \subseteq \langle \varphi \rangle.$

Observation: $\llbracket \varphi[e/x] \rrbracket^{\eta} = \llbracket \varphi \rrbracket^{\eta'}$ where $\eta' = \eta[x \mapsto \llbracket e \rrbracket^{\eta}]$ So if $\eta \in \langle \varphi[e/x] \rangle$ then $\eta' \in \langle \varphi \rangle$ Recall: $(\eta, \eta'') \in \llbracket x := e \rrbracket$ if and only if $\eta'' = \eta[x \mapsto \llbracket e \rrbracket^{\eta}]$, So $\llbracket x := e \rrbracket(\eta) \in \langle \varphi \rangle$ for all $\eta \in \langle \varphi[e/x] \rangle$ So $\llbracket x := e \rrbracket(\langle \varphi[e/x] \rangle) \subseteq \langle \varphi \rangle$

 $\frac{\left\{\varphi\right\} P\left\{\psi\right\} \quad \left\{\psi\right\} Q\left\{\rho\right\}}{\left\{\varphi\right\} P; Q\left\{\rho\right\}} \quad (\mathsf{seq})$

$$\frac{\left\{\varphi\right\} P\left\{\psi\right\} \quad \left\{\psi\right\} Q\left\{\rho\right\}}{\left\{\varphi\right\} P; Q\left\{\rho\right\}} \quad (\mathsf{seq})$$

Assume $\{\varphi\} P \{\psi\}$ and $\{\psi\} Q \{\rho\}$ are valid. Need to show that $\{\varphi\} P; Q \{\rho\}$ is valid.

$$\frac{\left\{\varphi\right\} P\left\{\psi\right\} \quad \left\{\psi\right\} Q\left\{\rho\right\}}{\left\{\varphi\right\} P; Q\left\{\rho\right\}} \quad (seq)$$

Assume $\{\varphi\} P \{\psi\}$ and $\{\psi\} Q \{\rho\}$ are valid. Need to show that $\{\varphi\} P; Q \{\rho\}$ is valid.

Recall: $\llbracket P; Q \rrbracket = \llbracket P \rrbracket; \llbracket Q \rrbracket$

$$\frac{\left\{\varphi\right\} P\left\{\psi\right\} \quad \left\{\psi\right\} Q\left\{\rho\right\}}{\left\{\varphi\right\} P; Q\left\{\rho\right\}} \quad (seq)$$

Assume $\{\varphi\} P \{\psi\}$ and $\{\psi\} Q \{\rho\}$ are valid. Need to show that $\{\varphi\} P; Q \{\rho\}$ is valid.

Recall: $\llbracket P; Q \rrbracket = \llbracket P \rrbracket; \llbracket Q \rrbracket$

So: $\llbracket P; Q \rrbracket (\langle \varphi \rangle) = \llbracket Q \rrbracket (\llbracket P \rrbracket (\langle \varphi \rangle))$ (see Lemma 1(c))

$$\frac{\left\{\varphi\right\} P\left\{\psi\right\} \quad \left\{\psi\right\} Q\left\{\rho\right\}}{\left\{\varphi\right\} P; Q\left\{\rho\right\}} \quad (seq)$$

Assume $\{\varphi\} P \{\psi\}$ and $\{\psi\} Q \{\rho\}$ are valid. Need to show that $\{\varphi\} P; Q \{\rho\}$ is valid.

Recall: $\llbracket P; Q \rrbracket = \llbracket P \rrbracket; \llbracket Q \rrbracket$

So: $\llbracket P; Q \rrbracket (\langle \varphi \rangle) = \llbracket Q \rrbracket (\llbracket P \rrbracket (\langle \varphi \rangle))$ (see Lemma 1(c))

By IH: $\llbracket P \rrbracket (\langle \varphi \rangle) \subseteq \langle \psi \rangle$ and $\llbracket Q \rrbracket (\langle \psi \rangle) \subseteq \langle \rho \rangle$

$$\frac{\left\{\varphi\right\} P\left\{\psi\right\} \quad \left\{\psi\right\} Q\left\{\rho\right\}}{\left\{\varphi\right\} P; Q\left\{\rho\right\}} \quad (seq)$$

Assume $\{\varphi\} P \{\psi\}$ and $\{\psi\} Q \{\rho\}$ are valid. Need to show that $\{\varphi\} P; Q \{\rho\}$ is valid.

Recall: $\llbracket P; Q \rrbracket = \llbracket P \rrbracket; \llbracket Q \rrbracket$

So: $\llbracket P; Q \rrbracket (\langle \varphi \rangle) = \llbracket Q \rrbracket (\llbracket P \rrbracket (\langle \varphi \rangle))$ (see Lemma 1(c))

By IH: $\llbracket P \rrbracket (\langle \varphi \rangle) \subseteq \langle \psi \rangle$ and $\llbracket Q \rrbracket (\langle \psi \rangle) \subseteq \langle \rho \rangle$

So: $\llbracket Q \rrbracket (\llbracket P \rrbracket (\langle \varphi \rangle)) \subseteq \llbracket Q \rrbracket (\langle \psi \rangle) \subseteq \langle \rho \rangle$ (see Lemma 1(a))

Two more useful results

Lemma

For $R \subseteq ENV \times ENV$, predicates φ and ψ , and $X \subseteq ENV$:

$$\textcircled{0} \quad \llbracket \varphi \rrbracket(X) = \langle \varphi \rangle \cap X$$

Two more useful results

Lemma

For $R \subseteq ENV \times ENV$, predicates φ and ψ , and $X \subseteq ENV$:

$$\textcircled{0} \quad \llbracket \varphi \rrbracket(X) = \langle \varphi \rangle \cap X$$

Proof (a):

Two more useful results

Lemma

For $R \subseteq ENV \times ENV$, predicates φ and ψ , and $X \subseteq ENV$:

$$\textcircled{0} \quad \llbracket \varphi \rrbracket(X) = \langle \varphi \rangle \cap X$$

Proof (a):

$$\begin{split} \eta' \in \llbracket \varphi \rrbracket(X) & \Leftrightarrow \quad \exists \eta \in X \text{ s.t. } (\eta, \eta') \in \llbracket \varphi \rrbracket \\ & \Leftrightarrow \quad \exists \eta \in X \text{ s.t. } \eta = \eta' \text{ and } \eta \in \langle \varphi \rangle \\ & \Leftrightarrow \quad \eta' \in X \cap \langle \varphi \rangle \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

Two more useful results

Lemma

For $R \subseteq ENV \times ENV$, predicates φ and ψ , and $X \subseteq ENV$:

Proof (b):

$$\begin{array}{lll} \langle \varphi \wedge \psi \rangle &=& \langle \varphi \rangle \cap \langle \psi \rangle = \llbracket \varphi \rrbracket (\langle \psi \rangle) \\ \\ \text{So } R(\langle \varphi \wedge \psi \rangle) &=& R(\llbracket \varphi \rrbracket (\langle \psi \rangle)) \\ &=& (\llbracket \varphi \rrbracket; R)(\langle \psi \rangle) \quad (\text{see Lemma 1(b)}) \end{array}$$

 $\frac{\{\varphi \land g\} P\{\psi\}}{\{\varphi\} \text{ if } g \text{ then } P \text{ else } Q \text{ fi } \{\psi\}} \quad \text{(if)}$

$$\frac{\{\varphi \land g\} P \{\psi\}}{\{\varphi\} \text{ if } g \text{ then } P \text{ else } Q \text{ fi} \{\psi\}} \quad \text{(if)}$$

Assume $\{\varphi \land g\} P \{\psi\}$ and $\{\varphi \land \neg g\} Q \{\psi\}$ are valid. Need to show that $\{\varphi\}$ if g then P else Q fi $\{\psi\}$ is valid.

$$\frac{\{\varphi \land g\} P \{\psi\}}{\{\varphi\} \text{ if } g \text{ then } P \text{ else } Q \text{ if } \{\psi\}} \quad \text{(if)}$$

Assume $\{\varphi \land g\} P \{\psi\}$ and $\{\varphi \land \neg g\} Q \{\psi\}$ are valid. Need to show that $\{\varphi\}$ if g then P else Q fi $\{\psi\}$ is valid.

Recall: $\llbracket \text{if } g \text{ then } P \text{ else } Q \text{ fi} \rrbracket = \llbracket g; P \rrbracket \cup \llbracket \neg g; Q \rrbracket$

$$\frac{\{\varphi \land g\} P \{\psi\}}{\{\varphi\} \text{ if } g \text{ then } P \text{ else } Q \text{ if } \{\psi\}} \quad \text{(if)}$$

Assume $\{\varphi \land g\} P \{\psi\}$ and $\{\varphi \land \neg g\} Q \{\psi\}$ are valid. Need to show that $\{\varphi\}$ if g then P else Q fi $\{\psi\}$ is valid.

Recall: $\llbracket \text{if } g \text{ then } P \text{ else } Q \text{ fi} \rrbracket = \llbracket g; P \rrbracket \cup \llbracket \neg g; Q \rrbracket$

[[if g then P else Q fi]]($\langle \varphi \rangle$)

 $\frac{\{\varphi \land g\} P\{\psi\}}{\{\varphi\} \text{ if } g \text{ then } P \text{ else } Q \text{ fi } \{\psi\}} \quad \text{(if)}$

Assume $\{\varphi \land g\} P \{\psi\}$ and $\{\varphi \land \neg g\} Q \{\psi\}$ are valid. Need to show that $\{\varphi\}$ if g then P else Q fi $\{\psi\}$ is valid.

Recall: $\llbracket \text{if } g \text{ then } P \text{ else } Q \text{ fi} \rrbracket = \llbracket g; P \rrbracket \cup \llbracket \neg g; Q \rrbracket$

 $\begin{bmatrix} \text{if } g \text{ then } P \text{ else } Q \text{ fi} \end{bmatrix} (\langle \varphi \rangle) \\ = \llbracket g; P \rrbracket (\langle \varphi \rangle) \cup \llbracket \neg g; Q \rrbracket (\langle \varphi \rangle) \quad (\text{see Lemma 1(b)}) \end{bmatrix}$

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ うへつ

 $\frac{\{\varphi \land g\} P\{\psi\}}{\{\varphi\} \text{ if } g \text{ then } P \text{ else } Q \text{ fi } \{\psi\}} \quad \text{(if)}$

Assume $\{\varphi \land g\} P \{\psi\}$ and $\{\varphi \land \neg g\} Q \{\psi\}$ are valid. Need to show that $\{\varphi\}$ if g then P else Q fi $\{\psi\}$ is valid.

Recall: [[if g then P else Q fi]] = [[g; P]] \cup [[$\neg g$; Q]]

 $\begin{bmatrix} \text{if } g \text{ then } P \text{ else } Q \text{ fi} \end{bmatrix} (\langle \varphi \rangle) \\ = \llbracket g; P \rrbracket (\langle \varphi \rangle) \cup \llbracket \neg g; Q \rrbracket (\langle \varphi \rangle) \quad (\text{see Lemma 1(b)}) \\ = \llbracket P \rrbracket (\langle g \land \varphi \rangle) \cup \llbracket Q \rrbracket (\langle \neg g \land \varphi \rangle) \quad (\text{see Lemma 2(b)}) \end{bmatrix}$

 $\frac{\{\varphi \land g\} P\{\psi\}}{\{\varphi\} \text{ if } g \text{ then } P \text{ else } Q \text{ fi } \{\psi\}} \quad \text{(if)}$

Assume $\{\varphi \land g\} P \{\psi\}$ and $\{\varphi \land \neg g\} Q \{\psi\}$ are valid. Need to show that $\{\varphi\}$ if g then P else Q fi $\{\psi\}$ is valid.

Recall: $\llbracket \text{if } g \text{ then } P \text{ else } Q \text{ fi} \rrbracket = \llbracket g; P \rrbracket \cup \llbracket \neg g; Q \rrbracket$

[[if g then P else Q fi]]($\langle \varphi \rangle$)

 $= \llbracket g; P \rrbracket (\langle \varphi \rangle) \cup \llbracket \neg g; Q \rrbracket (\langle \varphi \rangle) \qquad (\text{see Lemma 1(b)})$

 $\frac{\{\varphi \land g\} P \{\varphi\}}{\{\varphi\} \text{ while } g \text{ do } P \text{ od } \{\varphi \land \neg g\}} \quad \text{(loop)}$

 $\frac{\{\varphi \land g\} P \{\varphi\}}{\{\varphi\} \text{ while } g \text{ do } P \text{ od } \{\varphi \land \neg g\}} \quad \text{(loop)}$

Assume $\{\varphi \land g\} P \{\varphi\}$ is valid. Need to show that $\{\varphi\}$ while g do P od $\{\varphi \land \neg g\}$ is valid.

$$\frac{\{\varphi \land g\} P \{\varphi\}}{\{\varphi\} \text{ while } g \text{ do } P \text{ od } \{\varphi \land \neg g\}} \quad \text{(loop)}$$

Assume $\{\varphi \land g\} P \{\varphi\}$ is valid. Need to show that $\{\varphi\}$ while g do P od $\{\varphi \land \neg g\}$ is valid.

Recall: $\llbracket while g \text{ do } P \text{ od} \rrbracket = \llbracket g; P \rrbracket^*; \llbracket \neg g \rrbracket$

 $\frac{\{\varphi \land g\} P \{\varphi\}}{\{\varphi\} \text{ while } g \text{ do } P \text{ od } \{\varphi \land \neg g\}} \quad \text{(loop)}$

Assume $\{\varphi \land g\} P \{\varphi\}$ is valid. Need to show that $\{\varphi\}$ while g do P od $\{\varphi \land \neg g\}$ is valid.

Recall: $\llbracket while g \text{ do } P \text{ od} \rrbracket = \llbracket g; P \rrbracket^*; \llbracket \neg g \rrbracket$

 $\llbracket g; P \rrbracket (\langle \varphi \rangle) = \llbracket P \rrbracket (\langle g \land \varphi \rangle) \qquad (\text{see Lemma 2(b)})$

 $\frac{\{\varphi \land g\} P \{\varphi\}}{\{\varphi\} \text{ while } g \text{ do } P \text{ od } \{\varphi \land \neg g\}} \quad \text{(loop)}$

Assume $\{\varphi \land g\} P \{\varphi\}$ is valid. Need to show that $\{\varphi\}$ while g do P od $\{\varphi \land \neg g\}$ is valid.

Recall: $\llbracket while g \text{ do } P \text{ od} \rrbracket = \llbracket g; P \rrbracket^*; \llbracket \neg g \rrbracket$

 $\llbracket g; P \rrbracket(\langle \varphi \rangle) = \llbracket P \rrbracket(\langle g \land \varphi \rangle) \qquad (\text{see Lemma 2(b)})$ $\subseteq \langle \varphi \rangle \qquad (IH)$

 $\frac{\{\varphi \land g\} P \{\varphi\}}{\{\varphi\} \text{ while } g \text{ do } P \text{ od } \{\varphi \land \neg g\}} \quad \text{(loop)}$

Assume $\{\varphi \land g\} P \{\varphi\}$ is valid. Need to show that $\{\varphi\}$ while g do P od $\{\varphi \land \neg g\}$ is valid.

Recall: $\llbracket while g \text{ do } P \text{ od} \rrbracket = \llbracket g; P \rrbracket^*; \llbracket \neg g \rrbracket$

 $\llbracket g; P \rrbracket(\langle \varphi \rangle) = \llbracket P \rrbracket(\langle g \land \varphi \rangle) \qquad (\text{see Lemma 2(b)})$ $\subseteq \langle \varphi \rangle \qquad (\text{IH})$ So $\llbracket g; P \rrbracket^*(\langle \varphi \rangle) \subseteq \langle \varphi \rangle \qquad (\text{see Corollary})$

 $\frac{\{\varphi \land g\} P \{\varphi\}}{\{\varphi\} \text{ while } g \text{ do } P \text{ od } \{\varphi \land \neg g\}} \quad \text{(loop)}$

Assume $\{\varphi \land g\} P \{\varphi\}$ is valid. Need to show that $\{\varphi\}$ while g do P od $\{\varphi \land \neg g\}$ is valid.

Recall: $\llbracket while g \text{ do } P \text{ od} \rrbracket = \llbracket g; P \rrbracket^*; \llbracket \neg g \rrbracket$

 $\llbracket g; P \rrbracket(\langle \varphi \rangle) = \llbracket P \rrbracket(\langle g \land \varphi \rangle) \qquad (\text{see Lemma 2(b)})$ $\subseteq \langle \varphi \rangle \qquad (IH)$

So $\llbracket g; P \rrbracket^*(\langle \varphi \rangle) \subseteq \langle \varphi \rangle$ (see Corollary)

So $\llbracket g; P \rrbracket^*; \llbracket \neg g \rrbracket(\langle \varphi \rangle) = \llbracket \neg g \rrbracket(\llbracket g; P \rrbracket^*(\langle \varphi \rangle))$ (see Lemma 1(c))

 $\frac{\{\varphi \land g\} P \{\varphi\}}{\{\varphi\} \text{ while } g \text{ do } P \text{ od } \{\varphi \land \neg g\}} \quad \text{(loop)}$

Assume $\{\varphi \land g\} P \{\varphi\}$ is valid. Need to show that $\{\varphi\}$ while g do P od $\{\varphi \land \neg g\}$ is valid.

Recall: $\llbracket while g \text{ do } P \text{ od} \rrbracket = \llbracket g; P \rrbracket^*; \llbracket \neg g \rrbracket$

 $\llbracket g; P \rrbracket(\langle \varphi \rangle) = \llbracket P \rrbracket(\langle g \land \varphi \rangle) \qquad (\text{see Lemma 2(b)})$ $\subseteq \langle \varphi \rangle \qquad (\text{IH})$

So $\llbracket g; P \rrbracket^*(\langle \varphi \rangle) \subseteq \langle \varphi \rangle$ (see Corollary)

So $[g; P]^*; [\neg g](\langle \varphi \rangle) = [\neg g]([g; P]^*(\langle \varphi \rangle))$ (see Lemma 1(c)) $\subseteq [\neg g](\langle \varphi \rangle)$ (see Lemma 1(a))

 $\frac{\{\varphi \land g\} P \{\varphi\}}{\{\varphi\} \text{ while } g \text{ do } P \text{ od } \{\varphi \land \neg g\}} \quad \text{(loop)}$

Assume $\{\varphi \land g\} P \{\varphi\}$ is valid. Need to show that $\{\varphi\}$ while g do P od $\{\varphi \land \neg g\}$ is valid.

Recall: $\llbracket while g \text{ do } P \text{ od} \rrbracket = \llbracket g; P \rrbracket^*; \llbracket \neg g \rrbracket$

 $\llbracket g; P \rrbracket(\langle \varphi \rangle) = \llbracket P \rrbracket(\langle g \land \varphi \rangle) \qquad (\text{see Lemma 2(b)})$ $\subseteq \langle \varphi \rangle \qquad (IH)$

So $\llbracket g; P \rrbracket^*(\langle \varphi \rangle) \subseteq \langle \varphi \rangle$ (see Corollary)

So $[g; P]^*; [\neg g](\langle \varphi \rangle) = [\neg g]([g; P]^*(\langle \varphi \rangle))$ (see Lemma 1(c)) $\subseteq [\neg g](\langle \varphi \rangle)$ (see Lemma 1(a)) $= \langle \neg g \land \varphi \rangle$ (see Lemma 2(a))

$$\frac{\varphi' \to \varphi \quad \{\varphi\} P \{\psi\} \quad \psi \to \psi'}{\{\varphi'\} P \{\psi'\}} \quad \text{(cons)}$$

$$\frac{\varphi' \to \varphi \quad \{\varphi\} P \{\psi\} \quad \psi \to \psi'}{\{\varphi'\} P \{\psi'\}} \quad (\text{cons})$$

Assume $\{\varphi\} P \{\psi\}$ is valid and $\varphi' \to \varphi$ and $\psi \to \psi'$. Need to show that $\{\varphi'\} P \{\psi'\}$ is valid.

$$\frac{\varphi' \to \varphi \quad \{\varphi\} P \{\psi\} \quad \psi \to \psi'}{\{\varphi'\} P \{\psi'\}} \quad (\text{cons})$$

Assume $\{\varphi\} P \{\psi\}$ is valid and $\varphi' \to \varphi$ and $\psi \to \psi'$. Need to show that $\{\varphi'\} P \{\psi'\}$ is valid.

Observe: If $\varphi' \to \varphi$ then $\langle \varphi' \rangle \subseteq \langle \varphi \rangle$

$$\frac{\varphi' \to \varphi \quad \{\varphi\} P\{\psi\} \quad \psi \to \psi'}{\{\varphi'\} P\{\psi'\}} \quad (\text{cons})$$

Assume $\{\varphi\} P \{\psi\}$ is valid and $\varphi' \to \varphi$ and $\psi \to \psi'$. Need to show that $\{\varphi'\} P \{\psi'\}$ is valid.

Observe: If $\varphi' \to \varphi$ then $\langle \varphi' \rangle \subseteq \langle \varphi \rangle$

 $\llbracket P \rrbracket (\langle \varphi' \rangle) \subseteq \llbracket P \rrbracket (\langle \varphi \rangle) \text{ (see Lemma 1(a))}$

$$\frac{\varphi' \to \varphi \quad \{\varphi\} P\{\psi\} \quad \psi \to \psi'}{\{\varphi'\} P\{\psi'\}} \quad (\text{cons})$$

Assume $\{\varphi\} P \{\psi\}$ is valid and $\varphi' \to \varphi$ and $\psi \to \psi'$. Need to show that $\{\varphi'\} P \{\psi'\}$ is valid.

Observe: If $\varphi' \to \varphi$ then $\langle \varphi' \rangle \subseteq \langle \varphi \rangle$

$$\begin{split} \llbracket P \rrbracket (\langle \varphi' \rangle) &\subseteq \llbracket P \rrbracket (\langle \varphi \rangle) \quad (\text{see Lemma 1(a)}) \\ &\subseteq \langle \psi \rangle \qquad \qquad (\text{IH}) \\ &\subseteq \langle \psi' \rangle \end{split}$$

イロト イロト イヨト イヨト ヨー わへの